

04/24/2006

ENSR Consulting & Engineering - NJ 20 New England Ave Piscataway, NJ 08854

Attention: Mr. Greg Micalizio

STL Edison 777 New Durham Road Edison, NJ 08817

Tel 732 549 3900 Fax 732 549 3679 www.stl-inc.com

Laboratory Results
Job No. Q266 - Phillipsburg

Dear Mr. Micalizio:

Enclosed are the results you requested for the following sample(s) received at our laboratory on April 11, 2006.

<u>Lab No.</u> <u>Client ID</u> <u>Analysis Required</u>

725183 441LOCK 524.2

An invoice for our services is also enclosed. If you have any questions please contact your Project Manager, David Lissy, at (732) 549-3900.

Very Truly Yours,

Michael J. Urban

Laboratory Manager

Michael S. Ubos

Analytical Results Summary	1
General Information	5
Chain of Custody	5
Laboratory Chronicles	7
Methodology Review	9
Data Reporting Qualifiers	13
Non-Conformance Summary	15
GC/ MS Forms and Data (Volatiles)	17 17
Tuning Results Summary	26
Method Blank Results Summary	37
Calibration Summary	52
Surrogate Compound Recovery Summary	88
Spike Recovery Summary	92
Internal Standard Area and RT Summary	110
Injection Log Book	115
This is the Last Page of the Document	119

Analytical Results Summary

Client ID: 441LOCK Lab Sample No: 725183

Site: Phillipsburg Lab Job No: Q266

Date Sampled: 04/11/06 Matrix: WATER Date Received: 04/11/06 Level: DW

Date Analyzed: 04/13/06
GC Column: DB624
Instrument ID: VOAMS5.i

Instrument ID: VOAMS5.: Lab File ID: e41280.d

VOLATILE ORGANICS - GC/MS METHOD 524.2

<u>Parameter</u>	Analytical Result Units: ug/l	Quantitation Limit <u>Units: ug/l</u>
Dichlorodifluoromethane	ND	0.5
Chloromethane	ND	0.5
Vinyl Chloride	ND	0.5
Bromomethane	ND	0.5
Chloroethane	ND	0.5
Trichlorofluoromethane	ND	0.5
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	0.5
trans-1,2-Dichloroethene	ND	0.5
1,1-Dichloroethane	ND	0.5
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Bromochloromethane	ND	0.5
Chloroform	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
Benzene	ND	0.5
1,2-Dichloroethane	ND	0.5
Trichloroethene	0.6	0.5
1,2-Dichloropropane	ND	0.5
Dibromomethane	ND	0.5
Bromodichloromethane	ND	0.5
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
Tetrachloroethene	ND	0.5
1,3-Dichloropropane	ND	0.5
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5

2

Client ID: 441LOCK Lab Sample No: 725183

Site: Phillipsburg Lab Job No: Q266

Matrix: WATER Level: DW

Date Sampled: 04/11/06 Date Received: 04/11/06 Date Analyzed: 04/13/06 GC Column: DB624 Instrument ID: VOAMS5.i Purge Volume: 25.0 ml Dilution Factor: 1.0

Lab File ID: e41280.d

VOLATILE ORGANICS - GC/MS (cont'd) METHOD 524.2

<u>Parameter</u>	Analytical Result <u>Units: ug/l</u>	Quantitation Limit <u>Units: uq/l</u>
Xylene (Total)	NID	۵ ۲
Styrene	ND ND	0.5
Bromoform	ND ND	0.5
Isopropylbenzene	ND ND	0.5 0.5
1,1,2,2-Tetrachloroethane	ND ND	0.5
Bromobenzene		
1,2,3-Trichloropropane	ND ND	0.5 0.5
n-Propylbenzene	ND ND	0.5
2-Chlorotoluene	ND	0.5
1,3,5-Trimethylbenzene	ND ND	0.5
4-Chlorotoluene	ND ND	0.5
tert-Butylbenzene	ND ND	0.5
1,2,4-Trimethylbenzene	ND	0.5
sec-Butylbenzene	ND	0.5
m-Dichlorobenzene	ND	0.5
4-Isopropyltoluene	ND	0.5
p-Dichlorobenzene	ND	0.5
n-Butylbenzene	ND	0.5
o-Dichlorobenzene	ND	0.5
1,2-Dibromo-3-Chloropropane	ND	1.0
1,2,4-Trichlorobenzene	ND	0.5
Hexachlorobutadiene	ND	0.5
Naphthalene	ND	0.5
1,2,3-Trichlorobenzene	ND	0.5
MTBE	ND	0.5

3

Client ID: 441LOCK Lab Sample No: 725183

Site: Phillipsburg Lab Job No: Q266

Date Sampled: 04/11/06 Matrix: WATER Date Received: 04/11/06 Level: DW

Date Analyzed: 04/13/06 Purge Volume: 25.0 ml GC Column: DB624 Dilution Factor: 1.0

Instrument ID: VOAMS5.i
Lab File ID: e41280a.d

VOLATILE ORGANICS - GC/MS METHOD 524.2

<u>Parameter</u>	Analytical Result <u>Units: ug/l</u>	Quantitation Limit <u>Units: ug/l</u>
Acetone	ND	2.5
2-Butanone	ND	2.5
4-Methyl-2-pentanone	ND	2.5
2-Hexanone	ND	2.5
Carbon Disulfide	ND	2.5
Diethyl Ether	ND	2.5
Iodomethane	ND	2.5
Allyl Chloride	ND	2.5
Acrylonitrile	ND	25
Propionitrile	ND	25
Methyl Acrylate	ND	2.5
Methacrylonitrile	ND	2.5
Tetrahydrofuran	ND	2.5
1-Chlorobutane	ND	2.5
Methyl Methacrylate	ND	2.5
2-Nitropropane	ND	25
Chloroacetonitrile	ND	25
1,1-Dichloropropanone	ND	2.5
Ethyl Methacrylate	ND	2.5
trans-1,4-Dichloro-2-butene	ND	2.5
Pentachloroethane	ND	2.5
Hexachloroethane	ND	2.5
Nitrobenzene	ND	25

General Information

Chain of Custody

CHAIN OF CUSTODY / ANALYSIS REQUEST

STL EDISON777 New Durham Road
Edison, New Jersey 08817
Phone: (732) 549-3900 Fax: (732) 549-3679

Sampler's Name (Printpal) P.O. # A D S 7-75 A Regulatory Program: Analysis Turnaround Time Standard — Regulatory Program: 1 week No. of No. of	JUN ME	Other:	QUEST) LAB USE ONLY	Project No.	Job No.	Sample	721/1/3					Water Metals Filtered (Yes / No.)?	63	3		
Sampler's Name (Printed) NO. # Analysis Turnaround Time Standard	roject Identification	Location of Site): NJ: N NY: [STED (ENTER "X" BELOW TO INDICATE REQ									Water Metals	Company	Company	Сотрану	Company
Sampler's Name NOUS # 30 3 I Week			ANALYSIS		-	No. of Cont.	X				Soil:	er Temo:		Recent		
	Sampler's Name	P.O. # 303	Analysis			Time	1053				ល		Company A Multi	Company Da	Сотрапу Da	Company Da

Laboratory Chronicles

INTERNAL CUSTODY RECORD AND LABORATORY CHRONICLE STL Edison

777 New Durham Road, Edison, New Jersey 08817

Job No:	Q266	Site:	Phillipsburg	
Client:	ENSR Consulting & Engineering - NJ	_		

VOAMS

WATER - 524.2

Lab Sample ID	Date Sampled	Date Received	Preparation Date	Technician's Name	Analysis Date	Analyst's Name	QA Batch
725183	4/11/2006	4/11/2006			4/13/2006	Deng, Lily	1741
725183	4/11/2006	4/11/2006			4/13/2006	Deng, Lily	1743
						_	

Methodology Review

Analytical Methodology Summary

Volatile Organics:

Unless otherwise specified, water samples are analyzed for volatile organics by purge and trap GC/MS as specified in EPA Method 624. Drinking water samples are analyzed by EPA Method 524.2 Rev 4.1. Solid samples are analyzed for volatile organics as specified in the EPA publication "Test Methods for Evaluating Solid Waste" (SW-846, 3rd Edition) Method 8260B.

Acid and Base/Neutral Extractable Organics:

Unless otherwise specified, water samples are analyzed for acid and/or base/neutral extractable organics by GC/MS in accordance with EPA Method 625. Solids are analyzed for acid and/or base/neutral extractable organics as specified in the EPA publication "Test Methods for Evaluating Solid Waste" (SW-846, 3rd Edition) Method 8270C.

GC/MS Nontarget Compound Analysis:

Analysis for nontarget compounds is conducted, upon request, in conjunction with GC/MS analyses by EPA Methods 624, 625, 8260B and 8270C. Nontarget compound analysis is conducted using a forward library search of the EPA/NIH/NBS mass spectral library of compounds at the greatest apparent concentration (10% or greater of the nearest internal standard) in each organic fraction (15 for volatile, 15 for base/neutrals and 10 for acid extractables).

Organochlorine Pesticides and PCBs:

Unless otherwise specified, water samples are analyzed for organochlorine pesticides and PCBs by dual column gas chromatography with electron capture detectors as specified in EPA Method 608. Solid samples are analyzed as specified in the EPA publication "Test Methods for Evaluating Solid Waste" (SW-846, 3rd Edition) Method 8081A for organochlorine pesticides and Method 8082 for PCBs.

Total Petroleum Hydrocarbons:

Water samples are analyzed for petroleum hydrocarbons by I.R. using EPA Method 418.1. Solid samples are prepared for analysis by soxhlet extraction consistent with the March 1990 N.J. DEP "Remedial Investigation Guide" Appendix A, page 52, and analyzed by U.S. EPA Method 418.1

Metals Analysis:

Metals analyses are performed by any of four techniques specified by a Method Code provided on each data report page, as follows:

- P Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP)
- A Flame Atomic Absorption
- F Furnace Atomic Absorption
- CV Manual Cold Vapor (Mercury)

Water samples are digested and analyzed using EPA methods provided in "Methods for Chemical Analysis of Water and Wastewater" (EPA 600/4-79-020). Solid samples are analyzed as specified in the EPA publication "Test Methods for Evaluating Solid Waste" (SW-846, 3rd Edition); samples are digested according to Method 3050B "Acid Digestion of Soil, Sediments and Sludges."

Specific method references for ICP analyses are water Method - 200.7/SW846 6010B and for solid matrix - 6010B. Mercury analyses are conducted by the manual cold vapor technique specified by water Method 245.1/7470A and solid Method 7471A. Other specific Atomic Absorption method references are as follows:

Element	Water Test Method <u>Furnace</u>	Solid Test Method <u>Furnace</u>
Antimony	200.9	7041
Arsenic	200.9	7060A
Cadmium	200.9	7131A
Lead	200.9	7421
Selenium	200.9	7740
Thallium	200.9	7841

Cyanide:

Water samples are analyzed for cyanide using EPA Method 335.3. Cyanide is determined in solid samples as specified in the EPA Contract Laboratory Program IFB dated July 1988, revised February 1989.

Phenols:

Water samples are analyzed for total phenols using EPA Method 420.2. Total phenols are determined in water and solid samples by preparing the sample as outlined in the EPA Contract Laboratory Program IFB for cyanide, followed by a phenols determination using EPA Method 420.1.

Hexavalent Chromium:

Water samples are analyzed using EPA Method 7196A, EPA Method 7199 or (upon request) USGS -1230-35. Soil samples are subjected to alkaline digestion via EPA Method 3060A prior to analysis by EPA Method 7196A or EPA Method 7199.

Cleanup of Semivolatile Extracts:

Upon request Method 3611B Alumina Column Cleanup and/or Method 3650B Acid-Base Partition Cleanup are performed to improve detection limits by the removal of saturated hydrocarbon interferences.

Hazardous Waste Characteristics:

Samples for hazardous waste characteristics are analyzed as specified in the U.S. EPA publication "Test Methods for Evaluating Solid Waste" (SW-846, 3rd Edition). Specific method references are as follows:

Ignitability - Method 1020A

Corrosivity - Water pH Method 9040B Soil pH Method 9045C

Reactivity - Chapter 7, Section 7.3.3 and 7.3.4 respectively for hydrogen cyanide and hydrogen sulfide release

Toxicity - TCLP Method 1311

Miscellaneous Parameters:

Additional analyses performed on both aqueous and solid samples are in accordance with methods published in the following references:

- Test Methods for Evaluating Solid Wastes, SW-846 3rd Edition, November 1986.
- Standard Methods for the Examination of Water and Wastewater, 18th Edition.
- Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, 1979.

Data Reporting Qualifiers

DATA REPORTING QUALIFIERS

- ND The compound was not detected at the indicated concentration.
 - J Mass spectral data indicates the presence of a compound that meets the identification criteria. The result is less than the specified detection limit but greater than zero. The concentration given is an approximate value.
 - B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
 - P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
 - * For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

Non-Conformance Summary

Nonconformance Summary

STL Edison Job Number: Q266

Client: ENSR Consulting & Engineering - NJ

Date: 4/21/2006

Sample Receipt:

Sample delivery conforms with requirements.

Volatile Organic Analysis (GC/MS):

All data conforms with method requirements.

I certify that the test results contained in this data package meet all requirements of NELAC both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Michael J.Urban Laboratory Manager

Michael S. Ubox

Q266 STL Edison 16

GC/MS Forms and Data (Volatiles)

Results Summary and Chromatograms

Client ID: 441LOCK Lab Sample No: 725183

Site: Phillipsburg Lab Job No: Q266

Date Sampled: 04/11/06
Date Received: 04/11/06
Date Analyzed: 04/13/06 Matrix: WATER Level: DW

Purge Volume: 25.0 ml GC Column: DB624 Instrument ID: VOAMS5.i Dilution Factor: 1.0

Lab File ID: e41280.d

VOLATILE ORGANICS - GC/MS METHOD 524.2

<u>Parameter</u>	Analytical Result <u>Units: uq/l</u>	Quantitation Limit <u>Units: ug/l</u>
Dichlorodifluoromethane Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Methylene Chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene 2,2-Dichloropropane Bromochloromethane Chloroform 1,1,1-Trichloroethane 1,1-Dichloropropene Carbon Tetrachloride Benzene 1,2-Dichloroethane Trichloroethene 1,2-Dichloropropane Dibromomethane Bromodichloromethane cis-1,3-Dichloropropene Toluene trans-1,3-Dichloropropene 1,1,2-Trichloroethane		
Tetrachloroethene 1,3-Dichloropropane Dibromochloromethane 1,2-Dibromoethane Chlorobenzene 1,1,1,2-Tetrachloroethane Ethylbenzene	ND ND ND ND ND ND	0.5 0.5 0.5 0.5 0.5 0.5

Client ID: 441LOCK Lab Sample No: 725183

Site: Phillipsburg Lab Job No: Q266

Matrix: WATER Level: DW

Date Sampled: 04/11/06 Date Received: 04/11/06 Date Analyzed: 04/13/06 GC Column: DB624 Instrument ID: VOAMS5.i Purge Volume: 25.0 ml Dilution Factor: 1.0

Lab File ID: e41280.d

VOLATILE ORGANICS - GC/MS (cont'd) METHOD 524.2

<u>Parameter</u>	Analytical Result <u>Units: uq/l</u>	Quantitation Limit <u>Units: ug/l</u>
Xylene (Total)	ND	0.5
Styrene	ND	0.5
Bromoform	ND	0.5
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
Bromobenzene	ND	0.5
1,2,3-Trichloropropane	ND	0.5
n-Propylbenzene	ND	0.5
2-Chlorotoluene	ND	0.5
1,3,5-Trimethylbenzene 4-Chlorotoluene	ND	0.5
	ND	0.5
tert-Butylbenzene	ND	0.5
1,2,4-Trimethylbenzene	ND	0.5
sec-Butylbenzene	ND	0.5
m-Dichlorobenzene	ND	0.5
4-Isopropyltoluene	ND	0.5
p-Dichlorobenzene	ND	0.5
n-Butylbenzene	ND	0.5
o-Dichlorobenzene	ND	0.5
1,2-Dibromo-3-Chloropropane	ND	1.0
1,2,4-Trichlorobenzene	ND	0.5
Hexachlorobutadiene	ND	0.5
Naphthalene	ND	0.5
1,2,3-Trichlorobenzene	ND	0.5
MTBE	ND	0.5

Data File: /chem/VOAMS5.i/524/04-13-06/13apr06.b/e41280.d

Report Date: 19-Apr-2006 10:20

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file: /chem/VOAMS5.i/524/04-13-06/13apr06.b/e41280.d Lab Smp Id: 725183 Client Smp ID: 441

Client Smp ID: 441LOCK

Inj Date : 13-APR-2006 16:07

Operator : VOAMS 5 Smp Info : 725183 Inst ID: VOAMS5.i

Misc Info : Q266;1741;;LD

Comment :

Method : /chem/VOAMS5.i/524/04-13-06/13apr06.b/524_2_05.m Meth Date : 19-Apr-2006 10:20 lily Quant Type: TSTD Cal Date : 13-APR-2006 10:25 Cal File: e41269.d

Als bottle: 16

Dil Factor: 1.00000 Integrator: HP RTE

Compound Sublist: 524.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name Value Description 4-----------1.00000 Dilucion I DF 1.00000 Vo 25.0000 Dilution Factor

Cpnd Variable Local Compound Variable

						CONCENTRA	ATIONS
		QUANT SIG				ON-COLUMN	FINAL
C	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
=				====== =====			
*	2 Fluorobenzene	96	8.355	8.343 (1.000)	1354566	5.00000	
	21 Trichloroethene	95	8.766	8.757 (1.049)	69346	0.59526	0.60
\$	42 4-Bromofluorobenzene (SUR)	95	15.227	15.215 (1.822)	766966	4.95411	5.0
\$	57 1,2-Dichlorobenzene-d4 (SUR)	152	18.044	18.045 (2.160)	438652	4.90715	4.9

Data File: /chem/VOAMS5.i/524/04-13-06/13apr06.b/e41280.d

Date: 13-APR-2006 16:07

Client ID: 441LOCK

Instrument: VOAMS5.i

Sample Info: 725183

Purge Volume: 25.0 Column phase: DB624 Operator: VOAMS 5

Column diameter: 0.53

21 Trichloroethene

Concentration: 0.60 ug/L

Client ID: 441LOCK Lab Sample No: 725183

Site: Phillipsburg Lab Job No: Q266

Date Sampled: 04/11/06 Matrix: WATER Date Received: 04/11/06 Level: DW

Date Analyzed: 04/13/06 Purge Volume: 25.0 ml GC Column: DB624 Dilution Factor: 1.0

Instrument ID: VOAMS5.i
Lab File ID: e41280a.d

VOLATILE ORGANICS - GC/MS METHOD 524.2

<u>Parameter</u>	Analytical Result <u>Units: uq/l</u>	Quantitation Limit <u>Units: uq/l</u>
Acetone	ND	2.5
2-Butanone	ND	2.5
4-Methyl-2-pentanone	ND	2.5
2-Hexanone	ND	2.5
Carbon Disulfide	ND	2.5
Diethyl Ether	ND	2.5
Iodomethane	ND	2.5
Allyl Chloride	ND	2.5
Acrylonitrile	ND	25
Propionitrile	ND	25
Methyl Acrylate	ND	2.5
Methacrylonitrile	ND	2.5
Tetrahydrofuran	ND	2.5
1-Chlorobutane	ND	2.5
Methyl Methacrylate	ND	2.5
2-Nitropropane	ND	25
Chloroacetonitrile	ND	25
1,1-Dichloropropanone	ND	2.5
Ethyl Methacrylate	ND	2.5
trans-1,4-Dichloro-2-butene	ND	2.5
Pentachloroethane	ND	2.5
Hexachloroethane	ND	2.5
Nitrobenzene	ND	25

Data File: /chem/VOAMS5.i/524-R4/04-13-06/13apr06.b/e41280a.d Report Date: 19-Apr-2006 10:23

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file: /chem/VOAMS5.i/524-R4/04-13-06/13apr06.b/e41280a.d
Lab Smp Id: 725183 Client Smp ID: 441LOCH
Inj Date: 13-APR-2006 16:07
Operator: VOAMS 5 Inst ID: VOAMS5.i
Smp Info: 725183 Client Smp ID: 441LOCK

Misc Info : Q266;1743;;LD

Comment

Method : /chem/VOAMS5.i/524-R4/04-13-06/13apr06.b/524R4_04.m Meth Date : 19-Apr-2006 10:22 lily Quant Type: ISTD Cal Date : 13-APR-2006 12:25 Cal File: e41273.d

Als bottle: 16

Dil Factor: 1.00000 Integrator: HP RTE

Compound Sublist: all.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name Value Description DF 1.00000 Dilution Factor Vo 25.00000 Sample Volume

Cpnd Variable

Local Compound Variable

						CONCENTRA	ATIONS
		QUANT SIG				ON-COLUMN	FINAL
Co	pmpounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
7.5		====	<u> </u>		========	======	
*	2 Fluorobenzene	96	8.355	8.338 (1.000)	1376599	5.00000	
\$	42 4-Bromofluorobenzene (SUR)	95	15.227	15.215 (1.822)	766966	4.80085	4.8
\$	57 1,2-Dichlorobenzene d4 (SUR)	152	18.044	18.037 (2.160)	438652	4.80465	4.8

Tuning Results Summary

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab File ID: E41264 BFB Injection Date: 04/13/06

Instrument ID: VOAMS5 BFB Injection Time: 0758

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
=====		
50	15.0 - 40.0% of mass 95	20.9
75	30.0 - 80.0% of mass 95	46.8
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	7.1
173	Less than 2.0% of mass 174	0.0 (0.0)1
174	50.0 - 100.0% of mass 95	66.6
175	5.0 - 9.0% of mass 174	5.4 (8.1)1
176	95.0 - 101.0% of mass 174	64.6 (97.0)1
177	5.0 - 9.0% of mass 176	4.6 (7.1)2
· ·	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

		LAB	LAB	DATE	TIME
	CLIENT ID	SAMPLE No.	FILE ID	ANALYZED	ANALYZED
	=========	=========	==========		=======
01	ESTD005	ESTD005	E41265	04/13/06	0825
02	ESTD002	ESTD002	E41266	04/13/06	0855
03	ESTD001	ESTD001	E41267	04/13/06	0925
04	ESTD040	ESTD040	E41268	04/13/06	0955
05	ESTD020	ESTD020	E41269	04/13/06	1025
06	1741BS	1741BS	E41274	04/13/06	1303
07	EV103	EV103	E41276	04/13/06	1408
80	1741BSD	1741BSD	E41286	04/13/06	1906
09					
10					
11					
12					
13					
14				:	
15					
16 17				·	
18					
19 20					
21					
22		li			

page 1 of 1

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab File ID: E41264 BFB Injection Date: 04/13/06

Instrument ID: VOAMS5 BFB Injection Time: 0758

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50 75 95 96 173 174 175 176	15.0 - 40.0% of mass 95 30.0 - 80.0% of mass 95 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50.0 - 100.0% of mass 95 5.0 - 9.0% of mass 174 95.0 - 101.0% of mass 174 5.0 - 9.0% of mass 176	20.9 46.8 100.0 7.1 0.0 (0.0)1 66.6 5.4 (8.1)1 64.6 (97.0)1 4.6 (7.1)2
	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

		LAB	LAB	DATE	TIME
	CLIENT ID	SAMPLE No.	FILE ID	ANALYZED	ANALYZED
	========	=========	=======================================	========	=======
01	ESTD005	ESTD005	E41265	04/13/06	0825
02	ESTD002	ESTD002	E41266	04/13/06	0855
03	ESTD001	ESTD001	E41267	04/13/06	0925
04	ESTD040	ESTD040	E41268	04/13/06	0955
05	ESTD020	ESTD020	E41269	04/13/06	1025
06	EV103	EV103	E41276	04/13/06	1408
07	441LOCK	725183	E41280	04/13/06	1607
08					
09					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					

page 1 of 1

Data File: /chem/VOAMS5.i/524/04-13-06/13apr06.b/e41264.d

Date : 13-APR-2006 07:58

Client ID:

Instrument: VOAMS5.i

Sample Info: EBFB103

Operator: VOAMS 8

Column phase: DB-624 1 Bromofluorobenzene Column diameter: 0.53

Data File: /chem/VOAMS5.i/524/04-13-06/13apr06.b/e41264.d

Date : 13-APR-2006 07:58

Client ID:

Instrument: VOAMS5.i

Sample Info: EBFB103

Operator: VOAMS 8

Column phase: DB-624

Column diameter: 0.53

Data File: e41264.d

Spectrum: Avg. Scans 60-62 (7.43), Background Scan 55

Location of Maximum: 95.00 Number of points: 113

	m/z	Y	m/z	Y		m/z	Y		m/z	4
-	36,00	1301	71,00	288	1	108.00	370	1	156.00	37
	37,00	8785	72,00	924	1	109.00	23	l	157,00	384
	38.00	6510	73,00	7552	1	110.00	385	l	161,00	133
	39.00	2306	74.00	20552	Ī	111,00	29	l	165,00	2:
	40.00	248	1 75.00	65624	I	115.00-	12	1	168.00	120
_	41,00	538	1 76,00	5453	!	116,00	764		174.00	9328
	42,00	68	I 77₊00	594	I	117,00	650	ı	175.00	758
	43,00	319	78,00	481	ļ	118.00	462	ļ	176,00	9049
	44.00	1147	79,00	2959	ļ	119,00	337	1	177.00	645
	45.00	1122	I 80.00	1037	l	120.00	474	!	178,00	15
	47.00	2967	+ 1 81. 00	2833	1	121.00	37	1	179,00	25
	48,00	710	1 82,00	562	ı	125,00	194	ļ	189,00	40
	49,00	6357	I 84₊0¢	132	ı	126.00	22	I	190,00	17
	50,00	29352	87,00	5587	ı	127,00	494	I	191.00	8
	51,00	9430	J 88₊00	5524	I	128,00	282	I	192.00	16
	52,00	202	 89,00	4	1	130.00	187	ı	193,00	42
	53,00	366	90.00	168	ı	131,00	710	l	195,00	9
	54,00	212	91,00	471	ļ	133,00	180	l	203,00	18
	56,00	1496	92,00	3033	ţ	134,00	148	I	205.00	34
	57.00	4041	93.00	4543	1	135.00	340	ı	208+00	40
	60,00	1494	 I 94₊00	12768	1	137.00	97	1	209,00	61
	61,00	7056	I 95₊00	140096	Ī	140.00	584	1	221,00	11
	62.00	6191	96.00	9949	ı	141,00	103	1	239,00%	18
	63.00	3685	98.00	371	ı	142,00	214	1	253,00	71
	64.00	427	! 99.00	584	I	143,00	1145	1	254,00	25
	67.00	280	102.00	365	1	145.00	402	ı	255,00	1
	68.00	13374	104.00	353	t	146.00	361	I		
	69,00	13077	105,00	738	I	147,00	1264	I		
	70,00	836	106.00	225	ı	148,00	175	l		

Data File: /chem/VOAMS5.i/524/04-13-06/13apr06.b/e41264.d

Date : 13-APR-2006 07:58

Client ID:

Instrument: VOAMS5.i

Sample Info: EBFB103

Operator: VOAMS 8

Column phase: BB-624

Column diameter: 0.53

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab File ID: E41264A BFB Injection Date: 04/13/06

Instrument ID: VOAMS5 BFB Injection Time: 0758

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
=====		
50	15.0 - 40.0% of mass 95	20.9
75	30.0 - 80.0% of mass 95	46.8
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	7.1
173	Less than 2.0% of mass 174	0.0 (0.0)1
174	50.0 - 100.0% of mass 95	66.6
175	5.0 - 9.0% of mass 174	5.4 (8.1)1
176	95.0 - 101.0% of mass 174	64.6 (97.0)1
177	5.0 - 9.0% of mass 176	4.6 (7.1)2
1		•
'	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

		LAB	LAB	DATE	TIME
	CLIENT ID	SAMPLE No.	FILE ID	ANALYZED	ANALYZED
	=========	=========	==========	=========	=======
01	ESTD020-R4	ESTD020-R4	E41270	04/13/06	1055
02	ESTD040-R4	ESTD040-R4	E41272	04/13/06	1155
03	ESTD005-R4	ESTD005-R4	E41273	04/13/06	1225
04	1743BS-R4	1743BS-R4	E41275	04/13/06	1338
05	EV103A	EV103A	E41276A	04/13/06	1408
06	1743BSD-R4	1743BSD-R4	E41287	04/13/06	1936
07					
80					
09					
10 11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					

page 1 of 1

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab File ID: E41264A BFB Injection Date: 04/13/06

Instrument ID: VOAMS5 BFB Injection Time: 0758

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
=====		=======================================
50	15.0 - 40.0% of mass 95	20.9
75	30.0 - 80.0% of mass 95	46.8
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	7.1
173	Less than 2.0% of mass 174	0.0 (0.0)1
174	50.0 - 100.0% of mass 95	66.6
175	5.0 - 9.0% of mass 174	$5.4 \overline{(8.1)1}$
176	95.0 - 101.0% of mass 174	64.6 (97.0)1
177	5.0 - 9.0% of mass 176	4.6 (7.1)2
		, , _ , _ ,
	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

		LAB	LAB	DATE	TIME
	CLIENT ID	SAMPLE No.	FILE ID	ANALYZED	ANALYZED
	CHIENT ID	SAMPLE NO.	LITE ID	AWALIZED	WWYTIZED
	=========	==========	===========	=======	========
01	ESTD020-R4	ESTD020-R4	E41270	04/13/06	1055
02	ESTD040-R4	ESTD040-R4	E41272		1155
		l I		04/13/06	
03	ESTD005-R4	ESTD005-R4	E41273	04/13/06	1225
04	EV103A	EV103A	E41276A	04/13/06	1408
05	441LOCK	725183	E41280A	04/13/06	1607
06	TILLOCK	/23103	DIIZOOA	04/13/00	1007
07					
08					i
09				-	
					
10			-		
11					
12					
13					
	ļ				
14					
15					
16					
17					
18					
19					
20					
21					
22					

page 1 of 1

Data File: /chem/VOAMS5.i/524-R4/04-13-06/13apr06.b/e41264a.d

Date : 13-APR-2006 07:58

Client ID:

Instrument: VOAMS5.i

Sample Info: EBFB103a

Operator: VOAMS 5

Column phase: DB-624

Column diameter: 0.53

			% RELATIVE	
m/e	ION ABUNDANCE CRITERIA		ABUNDANCE	
1		 		l
l 95 l	Base Peak, 100% relative abundance	1	100.00	1
1 50 1	15.00 - 40.00% of mass 95	1	20 ₊ 95	f
J 75 I	30.00 - 80.00% of mass 95	1	46.83	Ι,
1 96 !	5.00 - 9.00% of mass 95	1	7,10	1
1 173 1	Less than 2.00% of mass 174	1	0.00 (+ 0.00)	1
174	50.00 - 100.00% of mass 95	I	66,57	1
175	5.00 - 9.00% of mass 174	1	5,42 (8,14)	1
1 176	95.00 - 101.00% of mass 174	t	64,58 (97,02)	1
1 177 (5.00 - 9.00% of mass 176	1	4,61 (7,13)	1

Data File: /chem/VOAMS5.i/524-R4/04-13-06/13apr06.b/e41264a.d

Date : 13-APR-2006 07:58

Client ID:

Instrument: VOAMS5.i

Sample Info; EBFB103a

Operator: VOAMS 5

Column phase: DB-624

Column diameter: 0.53

Data File: e41264a.d

Spectrum: Avg. Scans 60-62 (7.43), Background Scan 55

Location of Maximum: 95.00 Number of points: 113

Y	m/z	`Y	m/z	Y	m/z	Υ .	m/z	
374	 156.00	370	108.00	288 I	71,00	1301	36,00	_
384	157.00	23 1	109.00	924 1	72,00	8785 1	37,00	
133	161,00	385 (110,00	75 52	73,00	6510 l	38,00	
21	165,00	29 1	111.00	20552	74,00	2306	39.00	
120	168,00	12	115.00	65624 l	75,00	248	40.00	
93280	174,00	764	116,00	5453 (76.00	538	41.00	_
7589	175,00	650 I	117.00	594 1	77,00	68 I	42,00	
90496	176,00	462	118,00	481	78.00	319 I	43.00	
6454	177,00	337	119,00	2959	79.00	1147 I	44.00	
154	178,00	474_1	120.00	1037	80,00	1122	45,00	
256	179,00	 37 I	121.00	2833	81,00	2967 I	47,00	
405	189.00	194	125,00	562 1	82,00	710 I	48,00	
174	190,00	22 1	126.00	132	84,00	6357 I	49,00	
83	191.00	494 1	127,00	5587 I	87,00	29352 1	50,00	
166	192.00	282	128,00	5524	88.00	9430	51,00	
421	193.00	187	130,00	4	89.00	202	52,00	
98	195,00	710	131.00	168	90,00	366 I	53,00	
182	203,00	180	133,00	471 1	91,00	212	54.00	
342	205.00	148	134,00	3033 1	92,00	1496 l	56.00	
408	208,00	340 (135,00	4543 (93,00	4041	57,00	
613	209,00	97 (137,00	12768	94.00	1494	60,00	-
115	221.00	584	140,00	140096 I	95,00	7056 l	61,00	
185	239.00	103 (141,00	9949	96.00	6191 l	62,00	
712	253.00	214 (142,00	371 l	98.00	3685	63,00	
251	254,00	1145	143,00	584 I	99,00	427	64.00	
12	255,00	402 1	145.00	365 I	102,00	280	67,00	
		361 1	146.00	353 I	104,00	13374 i	68,00	
		1264	147,00	738 I	105.00	13077	69,00	
		175 I	148,00	225 1	106,00	836 1	70,00	

Data File: /ohem/VOAMS5.i/524-R4/04-13-06/13apr06.b/e41264a.d

Date : 13-APR-2006 07:58

Client ID:

Instrument: VOAMS5.i

Sample Info: EBFB103a

Ogerator: VOAMS 5

Column phase: IB-624 Column diameter: 0.53

Method Blank Results Summary

VOLATILE METHOD BLANK SUMMARY

EV103

Matrix: WATER

Date Analyzed: 04/13/06

Level: DW

Time Analyzed: 1408

Lab File ID: E41276

Heated Purge (Y/N) N

Instrument ID: VOAMS5

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

		LAB	LAB	TIME
	CLIENT ID.	SAMPLE NO	FILE ID	ANALYZED
01	1741BS	======== 1741BS	E41274	1303
02	1741BSD	1741BSD	E41286	1906
03				
04 05				
06				
07				
80				
09 10				
11				
12				
13				
14 15				
16				
17				
18				
19 20				
21		-		
22				
23				
24 25				
26				
27				
28				
29				
30		l		

COMMENTS:		•	

page 1 of 1

VOLATILE METHOD BLANK SUMMARY

EV103	
-------	--

Matrix: WATER Date Analyzed: 04/13/06

Level: DW Time Analyzed: 1408

Lab File ID: E41276 Heated Purge (Y/N) N

Instrument ID: VOAMS5

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

		LAB	LAB	TIME
	CLIENT ID.	SAMPLE NO	FILE ID	ANALYZED
0.1	4411000	========	======================================	======================================
01 02	441LOCK	725183	E41280	1607
03				·
04			-	
05				
06				
07				
08 09				
10				
11				
12				
13				
14				
15				
16 17				
18			4100.1	
19				
20		-		
21				
22				
23				
24 25				
26				
27			-	
28				
29				
30				

COMMENTS:		

page 1 of 1

Lab Sample No: **EV103** Lab Job No: 1741 Client ID: EV103

Site:

Date Sampled:
Date Received:
Date Analyzed: 04/13/06 Matrix: WATER Level: DW

Purge Volume: 25.0 ml GC Column: DB624 Dilution Factor: 1.0

Instrument ID: VOAMS5.i Lab File ID: e41276.d

VOLATILE ORGANICS - GC/MS METHOD 524.2

<u>Parameter</u>	Analytical Result <u>Units: ug/l</u>	Quantitation Limit <u>Units: uq/l</u>
Dichlorodifluoromethane	ND	0.5
Chloromethane	ND	0.5
Vinyl Chloride	ND	0.5
Bromomethane	ND	0.5
Chloroethane	ND	0.5
Trichlorofluoromethane	ND	0.5
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	0.5
trans-1,2-Dichloroethene	ND	0.5
1,1-Dichloroethane	ND	0.5
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Bromochloromethane	ND	0.5
Chloroform	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
Benzene	ND	0.5
1,2-Dichloroethane	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Dibromomethane	ND	0.5
Bromodichloromethane	ND	0.5
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
Tetrachloroethene	ND	0.5
1,3-Dichloropropane	ND	0.5
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5

Client ID: EV103 Lab Sample No: EV103 Site: Lab Job No: 1741

Date Sampled: Matrix: WATER
Date Received: Level: DW

Date Analyzed: 04/13/06 Purge Volume: 25.0 ml GC Column: DB624 Dilution Factor: 1.0

Instrument ID: VOAMS5.i
Lab File ID: e41276.d

VOLATILE ORGANICS - GC/MS (cont'd) METHOD 524.2

<u>Parameter</u>	Analytical Result <u>Units: ug/l</u>	Quantitation Limit <u>Units: ug/l</u>
Xylene (Total) Styrene Bromoform	ND ND ND	0.5 0.5 0.5
Isopropylbenzene 1,1,2,2-Tetrachloroethane Bromobenzene 1,2,3-Trichloropropane	ND ND ND	0.5 0.5 0.5 0.5
n-Propylbenzene 2-Chlorotoluene 1,3,5-Trimethylbenzene	ND ND ND ND	0.5 0.5 0.5
4-Chlorotoluene	ND	0.5
tert-Butylbenzene	ND	0.5
1,2,4-Trimethylbenzene	ND	0.5
sec-Butylbenzene m-Dichlorobenzene 4-Isopropyltoluene	ND ND ND	0.5 0.5 0.5
p-Dichlorobenzene	ND	0.5
n-Butylbenzene	ND	0.5
o-Dichlorobenzene	ND	0.5
1,2-Dibromo-3-Chloropropane	ND	1.0
1,2,4-Trichlorobenzene	ND	0.5
Hexachlorobutadiene	ND	0.5
Naphthalene	ND	0.5
1,2,3-Trichlorobenzene	ND	0.5
TBA	ND	50
MTBE	ND	0.5
Freon TF	ND	0.5
p-Ethyltoluene	ND	0.5
p-Diethylbenzene	ND	0.5
1,2,4,5-Tetramethylbenzene	ND	0.5
Isopropanol	ND	100
n-Propanol	ND	250
2-Methylnaphthalene	ND	0.5
Dimethylnaphthalene (total)	ND	0.5

Client ID: EV103

Site:

Lab Sample No: EV103

Lab Job No: 1741

Date Sampled: Matrix: WATER Date Received: Level: DW

Date Analyzed: 04/13/06 GC Column: DB624

Instrument ID: VOAMS5.i
Lab File ID: e41276.d

Purge Volume: 25.0 ml Dilution Factor: 1.0

VOLATILE ORGANICS - GC/MS (cont'd) METHOD 524.2

<u>Parameter</u>	Analytical Result <u>Units: ug/l</u>	Quantitation Limit <u>Units: ug/l</u>
Vinyl Acetate	ND	0.5
Hexane	ND	0.5
1,4-Dioxane	ND	500
Cyclohexane	ND	1.0
Ethyl Acetate	ND	1.0

Client ID: EV103
Site:

Date Sampled:
Date Received:
Date Analyzed: 04/13/06
GC Column: DB624
Instrument ID: VOAMS5.i

Lab Sample No: EV103
Lab Job No: 1741

Matrix: WATER
Level: DW
Purge Volume: 25.0 ml
Dilution Factor: 1.0

Lab File ID: e41276.d

VOLATILE ORGANICS - GC/MS TENTATIVELY IDENTIFIED COMPOUNDS METHOD 524.2

1. NO VOLATILE ORGANIC COMPOUNDS FOUND 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17.		
4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.		
6. 7. 8. 9. 10. 11. 12. 13. 14. 15.		
8. 9. 10. 11. 12. 13. 14. 15.		
11. 12. 13. 14. 15.		
13. 14. 15.		
15. 16.		
17		
18.		
19. 20. 21.		
21. 22. 23.		
25.		
27. 28.		
29		

Q266 STL Edison 43

TOTAL ESTIMATED CONCENTRATION

0.0

Data File: /chem/VOAMS5.i/524/04-13-06/13apr06.b/e41276.d

Report Date: 19-Apr-2006 10:20

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file : /chem/VOAMS5.i/524/04-13-06/13apr06.b/e41276.d

Client Smp ID: EV103 Lab Smp Id: EV103

Inj Date : 13-APR-2006 14:08

Operator : VOAMS 5 Inst ID: VOAMS5.i

Smp Info : EV103

Misc Info : Comment

: /chem/VOAMS5.i/524/04-13-06/13apr06.b/524_2_05.m e: 19-Apr-2006 10:20 lily Quant Type: ISTD Method Meth Date: 19-Apr-2006 10:20 lily Cal File: e41269.d Cal Date : 13-APR-2006 10:25 Als bottle: 12 QC Sample: BLANK

Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo-* CpndVariable

Name	Value	Description
DF Vo	1.00000 25.00000	Dilution Factor Sample Volume

Cpnd Variable

Local Compound Variable

				CONCENTRA	ATIONS
QUANT SIG				ON-COLUMN	FINAL
MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
====	==		======	=======	
96	8.349	8.343 (1.000)	1383070	5.00000	
95	15.221	15.235 (1.823)	799141	5.05555	5.0
152	18.054	18.045 (2.162)	441251	4.83449	4.8
	MASS ==== 96 95	MASS RT === == 96 8.349 95 15.221	MASS RT EXP RT REL RT === ===============================	MASS RT EXP RT REL RT RESPONSE === = = = = = = = = = = = = = = = = =	QUANT SIG ON-COLUMN MASS RT EXPRT REL RT RESPONSE (ug/L) === = ==============================

VOLATILE METHOD BLANK SUMMARY

EV103A	
--------	--

Matrix: WATER Date Analyzed: 04/13/06

Level: DW Time Analyzed: 1408

Lab File ID: E41276A Heated Purge (Y/N) N

Instrument ID: VOAMS5

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

		LAB	LAB	TIME
	CLIENT ID.	SAMPLE NO	FILE ID	ANALYZED
	=======================================	=======	=========	=======
01	1743BS-R4	1743BS-R4	E41275	1338
02	1743BSD-R4	1743BSD-R4	E41287	1936
03				
04				
05				
06				
07				
80				
09				
10 11				
12				
13				
14				
15				
16				
17				
18				
19				
20			Total Control	
21				
22				
23				
24				
25				
26				
27				
28				
29				
30				

COMMENTS:		

page 1 of 1

VOLATILE METHOD BLANK SUMMARY

EV103A	
--------	--

Matrix: WATER

Date Analyzed: 04/13/06

Level: DW

Time Analyzed: 1408

Lab File ID: E41276A

Heated Purge (Y/N) N

Instrument ID: VOAMS5

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

		LAB	LAB	TIME
	CLIENT ID.	SAMPLE NO	FILE ID	ANALYZED
01	441LOCK	725183	E41280A	1607
02	44IDOCK	725165	E41200M	1807
03				
04				
05				
06 07				
08				
09				
10				
11				
12 13				
14				
15				
16			·	
17				
18 19				
20				
21				
22				
23				
24				
25 26				
27				
28				
29				
30				

COMMENTS:			

page 1 of 1

Client ID: EV103A

Site:

Lab Sample No: **EV103A** Lab Job No: 1743

Dilution Factor: 1.0

Date Sampled: Matrix: WATER Date Received: 04/13/06 Level: DW Purge Volume: 25.0 ml

GC Column: DB624

Instrument ID: VOAMS5.i Lab File ID: e41276a.d

VOLATILE ORGANICS - GC/MS METHOD 524.2

<u>Parameter</u>	Analytical Result <u>Units: uq/l</u>	Quantitation Limit <u>Units: ug/l</u>
Acetone	ND	2.5
2-Butanone	ND	2.5
4-Methyl-2-pentanone	ND	2.5
2-Hexanone	ND	2.5
Carbon Disulfide	ND	2.5
Diethyl Ether	ND	2.5
Iodomethane	ND	2.5
Allyl Chloride	ND	2.5
Acrylonitrile	ND	25
Propionitrile	ND	25
Methyl Acrylate	ND	2.5
Methacrylonitrile	ND	2.5
Tetrahydrofuran	ND	2.5
1-Chlorobutane	ND	2.5
Methyl Methacrylate	ND	2.5
2-Nitropropane	ND	25
Chloroacetonitrile	ND	25
1,1-Dichloropropanone	ND	2.5
Ethyl Methacrylate	ND	2.5
trans-1,4-Dichloro-2-butene	ND	2.5
Pentachloroethane	ND	2.5
Hexachloroethane	ND	2.5
Nitrobenzene	ND	25

Client ID: EV103A Lab Sample No: EV103A Site: Lab Job No: 1743

Date Sampled:
Date Received:
Date Analyzed: 04/13/06
GC Column: DB624

Instrument ID: VOAMS5.i
Lab File ID: e41276a.d

Matrix: WATER Level: DW

Purge Volume: 25.0 ml Dilution Factor: 1.0

VOLATILE ORGANICS - GC/MS TENTATIVELY IDENTIFIED COMPOUNDS METHOD 524.2

COMPOUND NAME	RT	EST. CONC.	Q
1NO VOLATILE ORGANIC COMPOUNDS FOUND			
3. 4. 5. 6.			
8. 9.			
11. 12. 13.			
15. 16.			
18. 19. 20.			
21. 22. 23. 24.			
25. 26. 27.			
28. 29. 30.			

TOTAL ESTIMATED CONCENTRATION 0.0

Data File: /chem/VOAMS5.i/524-R4/04-13-06/13apr06.b/e41276a.d Report Date: 19-Apr-2006 10:22

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file : /chem/VOAMS5.i/524-R4/04-13-06/13apr06.b/e41276a.d Lab Smp Id: EV103A Client Smp ID: EV103A

Inj Date : 13-APR-2006 14:08

Operator : VOAMS 5 Inst ID: VOAMS5.i

Smp Info : EV103A

Misc Info :

Comment :

Method : /chem/VOAMS5.i/524-R4/04-13-06/13apr06.b/524R4 04.m

Meth Date: 19-Apr-2006 10:22 lily Quant Type: ISTD Cal Date: 13-APR-2006 12:25 Cal File: e41273.d QC Sample: BLANK

Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value 🕠	Description
DF Vo	1.00000	Dilution Factor Sample Volume

Cpnd Variable

Local Compound-Variable

						CONCENTRA	TITONS
		QUANT SIG				ON-COLUMN	FINAL
C	Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
=		====	==	20122	======	======	======
*	2 Fluorobenzene	96	8.349	8.338 (1.000)	1401898	5.00000	
\$	42 4 Bromofluorobenzene (SUR)	95	15.221	15.215 (1.823)	799141	4.91198	4.9
\$	5 57 1,2-Dichlorobenzene-d4 (SUR)	152	18.054	18.037 (2.162)	441251	4.74590	4.7

Calibration Summary

VOLATILE ORGANICS INITIAL CALIBRATION DATA METHOD 524.2

Instrument ID: VOAMS5 Calibration Date(s): 04/13/06 04/13/06

Heated Purge: (Y/N) N Calibration Time(s): 0825 1025

LAB FILE ID: RRF1: E41267 RRF2: E41266 RRF5: E41265 RRF20: E41269 RRF40: E41268					
COMPOUND	RRF1	RRF2	RRF5	RRF20	RRF40
Dichlorodifluoromethane	0.447	0.432	0.458	0.432	0.463
Chloromethane	0.352	0.322			
Vinyl Chloride	0.346	0.305			0.349
Bromomethane	0.304				0.290
Chloroethane	0.230	0.225			0.223
Trichlorofluoromethane	0.639	0.581		0.586	
1,1-Dichloroethene	0.562	0.510		0.491	0.506
Methylene Chloride	0.243	0.224		0.224	0.228
trans-1,2-Dichloroethene	0.388	0.354			0.335
1,1-Dichloroethane	0.692	0.642		0.630	0.635
cis-1,2-Dichloroethene	0.390	0.329		0.314	0.320
2,2-Dichloropropane	0.581	0.538		0.508	0.524
Bromochloromethane	0.141	0.128		0.128	0.129
Chloroform	0.645	0.596		0.574	0.586
1,1,1-Trichloroethane	0.620	0.573		0.562	0.572
1,1-Dichloropropene	0.572	0.518		0.504	0.504
Carbon Tetrachloride	0.590	0.523		0.530	0.537
Benzene	1.026	0.930		0.922	0.925
1,2-Dichloroethane	0.242	0.225		0.216	0.216
Trichloroethene	0.462	0.430		0.419	0.416
1,2-Dichloropropane	0.362	0.335		0.333	0.331
Dibromomethane	0.155	0.152	0.142	0.148	0.149
Bromodichloromethane	0.441	0.406		0.429	0.438
cis-1,3-Dichloropropene	0.360	0.338		0.376	0.384
Toluene	0.750	0.684		0.691	0.689
trans-1,3-Dichloropropene	0.241	0.229		0.246	0.252
1,1,2-Trichloroethane	0.150	0.144		0.136	0.135
Tetrachloroethene	0.583	0.513	0.512	0.514	0.510
1,3-Dichloropropane	0.301	0.297		0.277	0.277
Dibromochloromethane	0.208	0.220			0.259
1,2-Dibromoethane	0.234	0.224	0.203	0.214	0.211
Chlorobenzene	0.906	0.844		0.826	0.822
1,1,1,2-Tetrachloroethane	0.366	0.350		0.355	0.350
Ethylbenzene	1.670	1.526		1.513	1.466
Xylene (Total)	0.604	0.556			0.543
Styrene	0.800	0.755		0.772	0.757
Bromoform	0.074	0.077		0.098	0.104
Isopropylbenzene	1.774	1.632	1.622	1.616	1.565
1,1,2,2-Tetrachloroethane	0.194	0.207	0.172	0.184	0.183

VOLATILE ORGANICS INITIAL CALIBRATION DATA (cont'd) METHOD 524.2

Instrument ID: VOAMS5 Calibration Date(s): 04/13/06 04/13/06

Heated Purge: (Y/N) N Calibration Time(s): 0825 1025

LAB FILE ID: RRF1: E412 RRF20: E41		RF2: E4126 RF40: E412		RF5: E41265	5
COMPOUND	RRF1	RRF2	RRF5	RRF20	RRF40
Bromobenzene 1,2,3-Trichloropropane n-Propylbenzene 2-Chlorotoluene 1,3,5-Trimethylbenzene 4-Chlorotoluene tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene m-Dichlorobenzene 4-Isopropyltoluene p-Dichlorobenzene n-Butylbenzene 0-Dichlorobenzene 1,2-Dibromo-3-Chloropropane 1,2,4-Trichlorobenzene Hexachlorobutadiene Naphthalene 1,2,3-Trichlorobenzene TBA MTBE	0.353 0.050 2.129 1.236 1.359 1.424 1.502 1.318 1.934 0.724 1.720 0.692 1.609 0.553 0.020 0.411 0.355 0.394 0.270 0.005 0.404	0.341 0.054 1.943 1.130 1.228 1.259 1.381 1.774 0.653 1.574 0.655 1.450 0.520 0.323 0.348 0.323 0.351 0.248 0.005 0.392	1.900 1.086 1.206 1.176 1.356 1.756 0.612 1.519 0.597 1.414 0.458 0.018 0.310 0.315 0.284 0.214	1.872 1.085 1.189 1.193 1.344	0.325 0.045 1.823 1.049 1.159 1.165 1.310 1.102 1.658 0.622 1.474 0.602 1.356 0.466 0.23 0.327 0.327 0.304 0.217 0.004 0.353
Freon TF p-Ethyltoluene p-Diethylbenzene 1,2,4,5-Tetramethylbenzene Isopropanol n-Propanol 2-Methylnaphthalene Dimethylnaphthalene Uinyl Acetate Hexane 1,4-Dioxane Cyclohexane Ethyl Acetate ==================================	0.715	0.660	0.634	0.076	0.599

VOLATILE ORGANICS INITIAL CALIBRATION DATA (cont'd) METHOD 524.2

Instrument ID: VOAMS5 Calibration Date(s): 04/13/06 04/13/06

Heated Purge: (Y/N) N Calibration Time(s): 0825 1025

1	T	COEFFICENT	%RSD
COMPOUND	CURVE	A1	OR R^2
COMPOUND	=====		i I
Dichlorodifluoromethane	AVRG	0.44639977	i I
Chloromethane	AVRG	0.33232805	4.4*
Vinyl Chloride	AVRG	0.33202878	5.3*
Bromomethane	AVRG	0.29132845	3.0*
Chloroethane	AVRG	0.22659777	3.7*
Trichlorofluoromethane	AVRG	0.60597893	4.0*
1,1-Dichloroethene	AVRG	0.51506908	5.4*
Methylene Chloride	AVRG	0.22769200	4.1*
trans-1,2-Dichloroethene	AVRG	0.35056375	6.7*
1,1-Dichloroethane	AVRG	0.64768373	3.9*
cis-1,2-Dichloroethene	AVRG	0.33373292	9.5*
2,2-Dichloropropane	AVRG	0.54091763	5.2*
Bromochloromethane	AVRG	0.12982212	5.3*
Chloroform ————	AVRG	0.59565519	4.8*
1,1,1-Trichloroethane	AVRG	0.57982352	4.0*
1,1-Dichloropropene	AVRG	0.52197876	5.4*
Carbon Tetrachloride	AVRG	0.54352884	4.9*
Benzene	AVRG	0.94410462	4.9*
1,2-Dichloroethane	AVRG	0.22167843	5.6*
Trichloroethene	AVRG	0.43001703	4.4*
1,2-Dichloropropane	AVRG	0.33525637	5.0*
Dibromomethane	AVRG	0.14897223	3.3*
Bromodichloromethane	AVRG	0.42442559	3.9*
cis-1,3-Dichloropropene	AVRG	0.36147232	5.2*
Toluene	AVRG	0.69847040	4.2*
trans-1,3-Dichloropropene	AVRG	0.23844728	4.9*
1,1,2-Trichloroethane	AVRG	0.13936856	5.4*
Tetrachloroethene	AVRG	0.52668752	6.0*
1,3-Dichloropropane	AVRG	0.28188844	6.3*
Dibromochloromethane	AVRG	0.23121110	9.2*
1,2-Dibromoethane	AVRG	0.21730939	5.5*
Chlorobenzene	AVRG	0.84023068	4.7*
1,1,1,2-Tetrachloroethane	AVRG	0.35135413	3.1*
Ethylbenzene	AVRG	1.53951168	5.0*
Xylene (Total)	AVRG	0.56063123	4.4*
Styrene	AVRG	0.76582937	2.8*
Bromoform	AVRG	0.08568959	16.2*
Isopropylbenzene	AVRG	1.64195498	4.8*
1,1,2,2-Tetrachloroethane	AVRG	0.18800756	7.0*

^{*} Compound with required maximum % RSD value.
** Compound with required minimum RRF value.

VOLATILE ORGANICS INITIAL CALIBRATION DATA (cont'd) METHOD 524.2

Instrument ID: VOAMS5 Calibration Date(s): 04/13/06 04/13/06

Heated Purge: (Y/N) N Calibration Time(s): 0825 1025

		COEFFICENT	%RSD
COMPOUND	CURVE	A1	OR R^2
COMPOOND	CURVE		OR R Z
Bromobenzene	AVRG	0.33535394	3.6*
1,2,3-Trichloropropane	AVRG	0.04777300	8.4*
n-Propylbenzene	AVRG	1.93323521	6.1*
2-Chlorotoluene	AVRG	1.11733290	6.4*
1,3,5-Trimethylbenzene	AVRG	1.22836859	6.3*
4-Chlorotoluene	AVRG	1.24357873	8.6*
tert-Butylbenzene	AVRG	1.37867942	
1,2,4-Trimethylbenzene	AVRG		5.4*
sec-Butylbenzene	AVRG	1.17357681	7.3* 5.8*
m-Dichlorobenzene			
	AVRG	0.65049886	6.8*
4-Isopropyltoluene	AVRG	1.56217073	6.1*
p-Dichlorobenzene	AVRG	0.63074713	6.6*
n-Butylbenzene	AVRG	1.44578801	6.7*
o-Dichlorobenzene	AVRG	0.49693950	7.9*
1,2-Dibromo-3-Chloropropane	AVRG	0.02139318	9.4*
1,2,4-Trichlorobenzene	AVRG	0.34796735	11.0*
Hexachlorobutadiene	AVRG	0.32325867	5.9*
Naphthalene	AVRG	0.32252171	15.1*
1,2,3-Trichlorobenzene	AVRG	0.23695477	9.8*
TBA	AVRG	0.00460510	13.8*
MTBE	AVRG	0.36949112	7.2*
Freon TF	AVRG	0.64322661	7.2*
p-Ethyltoluene	AVRG		
p-Diethylbenzene	AVRG		
1,2,4,5-Tetramethylbenzene	AVRG		
Isopropanol	AVRG		
n-Propanol	AVRG		
2-Methylnaphthalene	AVRG		
Dimethylnaphthalene (total)	AVRG		
Vinyl Acetate	AVRG		
Hexane	AVRG	***	
1,4-Dioxane	AVRG		
Cyclohexane	AVRG		
Ethyl Acetate	AVRG	0.07614973	6.9*
=======================================	=====	========	=======
4-Bromofluorobenzene (SUR)	AVRG	0.57145303	1.9*
1,2-Dichlorobenzene-d4 (SUR)	AVRG	0.32995954	1.9*
(,			
	· ——		l

^{*} Compound with required maximum % RSD value.
** Compound with required minimum RRF value.

Data File: /chem/VOAMS5.i/524/04-13-06/13apr06.b/e41267.d Report Date: 19-Apr-2006 10:19

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file : /chem/VOAMS5.i/524/04-13-06/13apr06.b/e41267.d

Lab Smp Id: ESTD001

Inj Date : 13-APR-2006 09:25 Operator : VOAMS 5 Smp Info : ESTD001 Inst ID: VOAMS5.i

Misc Info :

Comment

Method : /chem/VOAMS5.i/524/04-13-06/13apr06.b/524_2_05.m Quant Type: $\overline{I}S\overline{T}D$ Meth Date : 19-Apr-2006 10:19 lily

Cal File: e41267.d Cal Date : 13-APR-2006 09:25 Als bottle: 3 Calibration Sample, Level: 1

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vo	25.00000	Sample Volume

Cpnd Variable

Local Compound Variable

						NUOMA	TS
		QUANT SIG				CAL-AMT	ON-COT
Compo	unds	MASS	RT	EXP RT REL'RT	RESPONSE	(ug/L)	(ug/L)
<u> </u>			==		=======	~~=====	
1	Dichlorodifluoromethane	85	2.939	2.939 (0.352)	123363	1.00000	1.0
3	Chloromethane	50	3.247	3.247 (0.389)	96984	1.00000	1.0
4	Vinyl Chloride	62	3.452	3.438 (0.414)	95575	1.00000	1.0
5	Bromomethane	94	3.966	3.951 (0.476)	83789	1.00000	10
6	Chloroethane	64	4.069	4.069 (0.488)	63379	1.00000	1.0
7	Trichlorofluoromethane	101	4.450	4.479 (0.534)	176264	1.00000	1.0
8	1,1-Dichloroethene	61	5.125	5.140 (0.615)	155191	1.00000	1.1
111	Freon TF	101	5.169	5.184 (0.620)	197220	1.00000	1.1
9	Methylene Chloride	84	5.712	5.712 (0.685)	67138	1.00000	1.1
109	TBA	59	5.814	5.815 (0.697)	140886	100.000	1.1.0
110	MTBE	73	6.049	6.035 (0.725)	111381	1.00000	1 - 1.
10	trans-1,2-Dichloroethene	96	6.049	6.050 (0.725)	107156	1.00000	1.1
11	1,1-Dichloroethane	63	6.519	6.519 (0.782)	191028	1.00000	7 . 3,
12	cis-1,2-Dichloroethene	96	7.135	7.136 (0.856)	107517	1.00000	1.2
1.3	2,2-Dichloropropane	77	7.150	7.151 (0.857)	160304	1.00000	1.1
1.27	Ethyl Acetate	4.3	7.164	7.180 (0.859)	44419	2.00000	2.1(H)

Data File: /chem/VOAMS5.i/524/04-13-06/13apr06.b/e41267.d Report Date: 19-Apr-2006 10:19

					AMOUN	JTS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(na\r)	(ug/L)
	====	==	2-22		20 20 20 20 20 20 20 20 20 20 20 20 20 2	======
14 Bromochloromethane	128	7.385	7.386 (0.886)	38948	1.00000	1.1
15 Chloroform	83	7.443	7.444 (0.893)	177891	1.00000	1.1
16 1,1,1-Trichloroethane	97	7.678	7.680 (0.921)	171063	1.00000	1.1
17 1,1-Dichloropropene	75	7.840	7.841 (0.940)	157729	1.00000	1.1
18 Carbon Tetrachloride	117	7.869	7.870 (0.944)	162712	1.00000	1.1
20 1,2-Dichloroethane	62	8.060	8.062 (0.967)	66640	1.00000	1.1
19 Benzene	78	8.074	8.062 (0.968)	283095	1.00000	1.1
* 2 Fluorobenzene	96	8.338	8.343 (1.000)	1379311	5.00000	
21 Trichloroethene	95	8.749	8.757 (1.049)	127499	1.00000	1 3
22 1,2-Dichloropropane	63	9.013	9.008 (1.081)	99808	1.00000	1, . 1
23 Dibromomethane	93	9.160	9.156 (1.098)	42784	1.00000	1.0
24 Bromodichloromethane	83	9.306	9.318 (1.116)	121645	1.00000	1.0
25 cis-1,3-Dichloropropene	. 75	9.864	9.865 (1.183)	99187	1.00000	0.99
26 Toluene	92	10.362	10.366 (1.243)	206940	1.00000	1.1
27 trans-1,3-Dichloropropene	75	10.611	10.618 (1.273)	66575	1.00000	1.0
28 1,1,2-Trichloroethane	83	10.919	10.913 (1.309)	41368	1.00000	1.1
30 1,3-Dichloropropane	76	11.198	11.208 (1.343)	83128	1.00000	1.1
29 Tetrachloroethene	166	11.242	11.238 (1.348)	160965	1.00000	1.1
31 Dibromochloromethane	129	11.623	11.622 (1.394)	57532	1.00000	0.90
32 1,2-Dibromoethane	107	11.887	11.889 (1.426)	64457	1.00000	1.1
33 Chlorobenzene	112	12.854	12.850 (1.542)	249810	1.00000	11
34 1,1,1,2-Tetrachloroethane	131	12.986	12.983 (1.557)	101087	1.00000	1.0
35 Ethylbenzene	91	13.045	13.042 (1.564)	460681	1.00000	1.1
36 m+p-Xylene	106	13.309	13.310 (1.596)	341985	2.00000	2.1
37 o-Xylene	106	14.218	14.210 (1.705)	157590	1.00000	1.1
39 Styrene	104	14,233	14.239 (1.707)	220569	1.00000	1.0
40 Bromoform	173	14.629	14.625 (1.754)	203.13	1.00000	0.86
41 Isopropylbenzene	105	14.922	14.921 (1.790)	489476	1.00000	1.1
\$ 42 4-Bromofluorobenzene (SUR)	95	15.218	15.215 (1.825)	801118	5.00000	5.1
43 1,1,2,2 Tetrachloroethane	83	15.410	15.423 (1.848)		1.00000	1.0
45 1,2,3-Trichloropropane	110	15.529	15.526 (1.862)	13700	1.00000	1.0
44 Bromobenzene	156	15.514	15.526 (1.860)	97353	1.00000	1.0
46 n-Propylbenzene	91	15.662	15.660 (1.878)	587229	1.00000	1.1
47 2-Chlorotoluene	91	15.840	15.837 (1.900)	340835	1.00000	1.1
48 1,3,5-Trimethylbenzene	105	15.958	15.956 (1.914)	374929	1.00000	1.1
49 4-Chlorotoluene	91	16.017	16.016 (1.921)	392909	1.00000	1.1
	119		16.535 (1.983)	414506	1.00000	1.1
50 tert Butylbenzene			16.624 (1.994)		1.00000	1.1
51 1,2,4-Trimethylbenzene	105			363685		
52 sec-Butylbenzene	105	16.937	16.935 (2.031)	533425	1.00000	1.1
53 m Dichlorobenzene	146 •	17.175	17.172 (2.060)	199772	1.00000	1.1
54 4-Isopropyltoluene	119	17.189	17.202 (2.061)	474358	1.00000	1.1.
55 p-Dichlorobenzene	1.46	17.338	17.334 (2.079)	190930	1.00000	1.1
56 n-Butylbenzene	91	18.004	18.000 (2.159)	443983	1.00000	1.1
\$ 57 1,2-Dichlorobenzene-d4 (SUR)	152	18.034	18.045 (2.163)	447766	5.00000	4.9
58 o-Dichlorobenzene	146	18.064	18.074 (2.166)	152567	1.00000	1.1
60 1,2,4 Trichlorobenzene	180	21.355	21.361 (2.561)	113420	1.00000	1.2
61 Hexachlorobutadiene	225	21.726	21.717 (2.606)	97882	1.00000	1.1

Data File: /chem/VOAMS5.i/524/04-13-06/13apr06.b/e41267.d Report Date: 19-Apr-2006 10:19

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
	Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
		====	25 TE		========	2420222	======
	62 Naphthalene	128	21.934	21.925 (2.630)	108776	1.00000	1.2
	63 1,2,3-Trichlorobenzene	180	22.498	22.489 (2.698)	74534	1.00000	1.1
1	M 38 Xylene (Total)	100			499575	3.00000	3.2

QC Flag Legend

H - Operator selected an alternate compound hit.

59

Data File: /chem/VOAMS5.i/524/04-13-06/13apr06.b/e41266.d

Report Date: 19-Apr-2006 10:19

STL Edison

VOLATILE ORGANICS - METHOD 524.2

Data file : /chem/VOAMS5.i/524/04-13-06/13apr06.b/e41266.d

Lab Smp Id: ESTD002

Inj Date: 13-APR-2006 08:55
Operator: VOAMS 5
Smp Info: ESTD002 - Inst ID: VOAMS5.i

Misc Info :

Comment

: /chem/VOAMS5.i/524/04-13-06/13apr06.b/524_2_05.m : 19-Apr-2006 10:19 lily Quant Type: ISTD Method Meth Date : 19-Apr-2006 10:19 lily

Cal File: e41266.d Cal Date : 13-APR-2006 08:55

Als bottle: 2 Calibration Sample, Level: 2

Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vo	25.00000	Sample Volume

Local Compound Variable Cpnd Variable

				AMOUN	TS
QUANT SIG				CAL-AMT	ON-COL
MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
=: 25 GB #L	==	=======================================		======#	======
85	2.939	2.939 (0.352)	242874	2.00000	1.9
50	3.247	3.247 (0.389)	181150	2.00000	1.9
62	3.438	3.438 (0.412)	171696	2.00000	1.8
94	3.951	3,951 (0.474)	160385	2.00000	2.0
64	4.069	4.069 (0.488)	126367	2.00000	2.0
101	4.479	4.479 (0.537)	326593	2.00000	1.9
61.	5.140	5.140 (0.616)	287039	2.00000	2.0
1.01	5.184	5,184 (0,621)	371418	2.00000	2.0
84	5.712	5.712 (0.685)	125871	2.00000	2.0
59	-5.815	5.815 (0.697)	304615	200.000	240
73	6.035	6.035 (0.723)	220739	2.00000	2.1
96	6.050	6.050 (0.725)	199388	2.00000	2.0
63	6.519	6.519 (0.781)	361268	2.00000	2.0
96	7.136	7.136 (0.855)	184935	2.00000	2.0
77	7.151	7.151 (0.857)	302603	2.00000	2.0
43	7.180	7.180 (0.861)	80963	4.00000	3.8(H)
	MASS 85 50 62 94 64 101 61 1.01 84 59 73 96 63 96 77	MASS RT == 85 2.939 50 3.247 62 3.438 94 3.951 64 4.069 101 4.479 61 5.140 1.01 5.184 84 5.712 59 .5.815 73 6.035 96 6.050 63 6.519 96 7.136 77 7.151	MASS RT EXP RT REL RT 85 2.939 2.939 (0.352) 50 3.247 3.247 (0.389) 62 3.438 3.438 (0.412) 94 3.951 3.951 (0.474) 64 4.069 4.069 (0.488) 101 4.479 4.479 (0.537) 61 5.140 5.140 (0.616) 101 5.184 5.184 (0.621) 84 5.712 5.712 (0.685) 59 5.815 5.815 (0.697) 73 6.035 (0.723) 96 6.050 (6.050 (0.725) 63 6.519 (6.519 (0.781) 96 7.136 (7.136 (0.855) 77 7.151 (7.151 (0.857)	MASS RT EXP RT REL RT RESPONSE 85 2.939 2.939 (0.352) 242874 50 3.247 3.247 (0.389) 181.150 62 3.438 3.438 (0.412) 171696 94 3.951 3.951 (0.474) 160385 64 4.069 4.069 (0.488) 126367 101 4.479 4.479 (0.537) 326593 61 5.140 5.140 (0.616) 287039 101 5.184 5.184 (0.621) 371418 84 5.712 5.712 (0.685) 125871 59 5.815 5.815 (0.697) 304615 73 6.035 6.035 (0.723) 220739 96 6.050 6.050 (0.725) 199388 63 6.519 6.519 (0.781) 361268 96 7.136 7.136 (0.855) 184935 77 7.151<	QUANT SIG MASS RT EXP RT REL RT RESPONSE (ug/L) 200000 85 3.247 3.247 (0.389) 181150 2.00000 62 3.438 3.438 (0.412) 171696 2.00000 94 3.951 3.951 (0.474) 160385 2.00000 64 4.069 4.069 (0.488) 126367 2.00000 101 4.479 4.479 (0.537) 326593 2.00000 101 5.140 5.140 5.140 (0.616) 287039 2.00000 101 5.184 5.184 (0.621) 371418 2.00000 84 5.712 5.712 (0.685) 125871 2.00000 73 6.035 6.035 6.035 (0.723) 220739 2.00000 63 6.519 6.519 (0.781) 361268 2.00000 77 7.151 7.151 7.151 (0.857) 302603 2.00000

Data File: /chem/VOAMS5.i/524/04-13-06/13apr06.b/e41266.d Report Date: 19-Apr-2006 10:19

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON · COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	====	### ### ### ##########################				======
14 Bromochloromethane	128	7.386	7.386 (0.885)	72227	2.00000	2.0
15 Chloroform	83	7.444	7.444 (0.892)	335007	2.00000	2.0
16 1,1,1-Trichloroethane	97	7.680	7.680 (0.920)	322444	2.00000	2.0
17 1,1-Dichloropropene	75	7.841	7.841 (0.940)	291069	2.00000	2.0
18 Carbon Tetrachloride	117	7.870	7.870 (0.943)	294017	2.00000	1.9
20 1,2-Dichloroethane	62	8.062	8.062 (0.966)	126562	2.00000	2.0
19 Benzene	78	8.062	8.062 (0.966)	522824	2.00000	2.0
* 2 Fluorobenzene	96	8.343	8.343 (1.000)	1,406081	5.00000	
21 Trichloroethene	95	8.757	8.757 (1.050)	241621	2.00000	2.0
22 1,2-Dichloropropane	63	9.008	9.008 (1.080)	188677	2.00000	2.0
23 Dibromomethane	93	9.156	9.156 (1.097)	85259	2.00000	2.0
24 Bromodichloromethane	83	9.318	9.318 (1.117)	228679	2.00000	1.9
25 cis-1,3-Dichloropropene	75	9.865	9.865 (1.182)	190072	2.00000	1.9
26 Toluene	92	10.366	10.366 (1.242)	384642	2.00000	2.0
27 trans-1,3-Dichloropropene	75	10.618	10.618 (1.273)	128809	2.00000	1.9
28 1,1,2-Trichloroethane	83	10.913	10.913 (1.308)	81169	2.00000	2.1
30 1,3-Dichloropropane	76	11.208	11.208 (1.343)	166975	2.00000	2.1
29 Tetrachloroethene	166	11.238	11.238 (1.347)	288712	2.00000	1.9
31 Dibromochloromethane	129	11.622	11.622 (1.393)	123907	2.00000	1.9
32 1,2-Dibromoethane	107	11.889	11.889 (1.425)	126310	2.00000	2.1
33 Chlorobenzene	112	12.850	12.850 (1.540)	474767	2.00000	2.0
34 1,1,1,2-Tetrachloroethane	131	12.983	12.983 (1.556)	196797	2.00000	2.0
35 Ethylbenzene	91	13.042	13.042 (1.563)	858445	2.00000	2.0
36 m∗p-Xylene	106	13.310	13.310 (1.595)	635755	4.00000	3.9
37 o-Xylene	106	14.210	14.210 (1.703)	301809	2.00000	2.0
39 Styrene	104	14.239	14.239 (1.707)	424712	2.00000	2.0
40 Bromoform	173	14.625	14.625 (1.753)	43137	2.00000	1.8
41 Isopropylbenzene	105	14.921	14.921 (1.788)	917698	2.00000	2.0
	95	15.215	15.215 (1.824)	807556	5,00000	5.0
\$ 42 4-Bromofluorobenzene (SUR)	83	15.423	15.215 (1.824)	116276	2.00000	2,2
43 1,1,2,2-Tetrachloroethane			15.423 (1.849)	30381	2.00000	2.3
45 1,2,3-Trichloropropane	110 156	15.526 15.526	15.526 (1.861)	192012	2.00000	2.0
44 Bromobenzene			15.660 (1.877)	1092656	2.00000	2.0
46 n Propylbenzene	91	15.660		635850	2.00000	2.0
47 2-Chlorotoluene	91	15.837	15.837 (1.898)		2.00000	2.0
48 1,3,5-Trimethylbonzene	105	15.956	15.956 (1.913)	690671		2.0
49 4-Chlorotoluene	91		16.016 (1.920)	708078	2.00000	
50 tert-Butylbenzene	119		16.535 (1.982)	776722	2.00000	2.0
51 1,2,4-Trimethylbenzene	105		16.624 (1.993)	664996	2.00000	2.0
52 sec-Butylbenzene	105	16.935	16.935 (2.030)	997850	2.00000	2.0
53 m-Dichlorobenzene	146	17.172	17.172 (2.058)	367356	2.00000	2.0
54 4-Isopropyltoluene	119	17.202	17.202 (2.062)	885033	2.00000	2.0
55 p-Dichlorobenzene	146		17.334 (2.078)	368647	2.00000	2.1
56 n-Butylbenzene	91	18.000	18.000 (2.158)	815735	2.00000	2.0
\$ 57 1,2-Dichlorobenzene-d4 (SUR)	152	18.045	18.045 (2.163)	459956	5.00000	5.0
58 o-Dichlorobenzene	146	18.074	18.074 (2.166)	292703	2.00000	2.1
59 1,2-Dibromo-3-Chloropropane	75	19.626	19.626 (2.352)	12722	2.00000	2.1
60 1,2,4-Trichlorobenzene	180	21.361	21.361 (2.560)	195612	2.00000	2.0

Data File: /chem/VOAMS5.i/524/04-13-06/13apr06.b/e41266.d Report Date: 19-Apr-2006 10:19

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
x=xcz==================================	====	==		=======	======	도 환경 점 등 등 등
61 Hexachlorobutadiene	225	21.717	21.717 (2.603)	181892	2.00000	2.0
62 Naphthalene	128	21.925	21.925 (2.628)	197514	2.00000	2.2
63 1,2,3-Trichlorobenzene	180	22.489	22.489 (2.696)	139645	2.00000	2.1
M 38 Xylene (Total)	100			937564	6.00000	5.9

QC Flag Legend

H - Operator selected an alternate compound hit.

File: /chem/VOAMS5.i/524/04-13-06/13apr06.b/e41266.d

Data File: /chem/VOAMS5.i/524/04-13-06/13apr06.b/e41265.d Report Date: 19-Apr-2006 10:19

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file : /chem/VOAMS5.i/524/04-13-06/13apr06.b/e41265.d Lab Smp Id: ESTD005

Inj Date : 13-APR-2006 08:25 Operator : VOAMS 5 Smp Info : ESTD005 Inst ID: VOAMS5.i

Misc Info :

Comment

: /chem/VOAMS5.i/524/04-13-06/13apr06.b/524 2_05.m Method Quant Type: $\overline{I}S\overline{T}D$ Meth Date: 19-Apr-2006 10:19 lily

Cal Date : 13-APR-2006 08:25 Cal File: e41265.d

Calibration Sample, Level: 3 Als bottle: 1

Dil Factor: 1.00000 Integrator: HP RTE

Compound Sublist: all.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vo	25.00000	Sample Volume

Local Compound Variable Cpnd Variable

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Compounds		MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	=======================================	====	==			======	======
1	Dichlorodifluoromethane	85	2.910	2.939 (0.349)	596839	5.00000	5.1
3	Chloromethane	50	3.219	3.247 (0.386)	421651	5.00000	4.9
4	Vinyl Chloride	62	3.425	3.438 (0.411)	427553	5.00000	4.9
5	Bromomethane	94	3.924	3.951 (0.471)	385359	5.00000	5.1
6	Chloroethane	64	4.041	4.069 (0.485)	311657	5.00000	5.3
7	Trichlorofluoromethane	101	4.453	4.479 (0.535)	809954	5.00000	5.1
8	1,1-Dichloroethene	61	5.099	5.140 (0.612)	659138	5.00000	4.9
111	Freon TF	101	5.143	5.184 (0.617)	826303	5.00000	4.9
9	Methylene Chloride	84	5.686	5.712 (0.683)	286134	5.00000	4.8
109	TBA	59	5.789	5.815 (0.695)	518440	500.000	430
110	MTBE '	73	6.009	6.035 (0.721)	452583	5.00000	4.7
10	trans-1,2-Dichloroethene	96	6.024	6.050 (0.723)	451,921	5.00000	4.9
11	1,1-Dichloroethane	63	6.494	6.519 (0.780)	832624	5.00000	4.9
12	cis-1,2-Dichloroethene	96	7.110	7.136 (0.854)	412373	5.00000	4.7
13	2,2 Dichloropropane	77	7.125	7.151 (0.855)	721482	5.00000	5.1
127	Ethyl Acetate	43	7.154	7.180 (0.859)	182449	10.0000	9.2(H)

Data File: /chem/VOAMS5.i/524/04-13-06/13apr06.b/e41265.d Report Date: 19-Apr-2006 10:19

						AMOUN	TS
	QUANT \$1G		*			CAL-AMT	ON-COL
Compounds	MASS	R'I'	EXP RT	REL RT	RESPONSE	(ug/L)	(ug/L)
	====	t= 20	E0====		******		.======
14 Bromochloromethane	128	7.374	• •	(0.885)	159675	5.00000	4.7
15 Chloroform	83	7.418	7.444	(0.891)	753504	5.00000	4.8
16 1,1,1-Trichloroethane	97 .	7.668	7.680	(0.921)	745513	5.00000	4.9
17 1,1-Dichloropropene	75	7.815	7.841	(0.938)	667529	5.00000	4.9
18 Carbon Tetrachloride	11.7	7.844	7.870	(0.942)	701682	5.00000	4.9
20 1,2-Dichloroethane	62	8.035	8.062	(0.965)	273830	5.00000	4.7
19 Benzene	7.8	8.050	8.062	(0.966)	1195863	5.00000	4.8
* 2 Fluorobenzene	96	8.329	8.343	(1.000)	1304100	5.00000	
21 Trichloroethene	95	8.740	8.757	(1.049)	552893	5.00000	4.9
22 1,2-Dichloropropane	63	8.990	9.008	(1.079)	410893	5.00000	4.7
23 Dibromomethane	93	9.136	9.156	(1.097)	184789	5.00000	4.8
24 Bromodichloromethane	83	9.298	9.318	(1.116)	530895	5.00000	4.8
25 cis-1,3-Dichloropropene	75	9.841	9.865	(1.182)	456201	5.00000	4.8
26 Toluene	92	10.340	10.366	(1.241)	885183	5.00000	4.8
27 trans-1,3-Dichloropropene	75	10.590	10.618	(1.271)	292222	5.00000	4.7
28 1,1,2-Trichloroethane	83	10.898	10.913	(1.308)	171531	5.00000	4.7
30 1,3-Dichloropropane	76	11.177	11.208	(1.342)	334981	5.00000	4.6
29 Tetrachloroethene	166	11.221	11.238	(1.347)	667789	5.00000	4.9
31 Dibromochloromethane	129	11.603	11.622	(1.393)	286548	5.00000	4.8
32 1,2-Dibromoethane	107	11.867	11.889	(1.425)	264907	5.00000	4.7
33 Chlorobenzene	112	12.835	12.850	(1.541)	1046970	5.00000	4.8
34 1,1,1,2-Tetrachloroethane	131	12.968	12.983	(1.557)	438454	5.00000	4.8
35 Ethylbenzene	91	13.027	13.042	(1.564)	1985463	5.00000	4.9
36 m+p-Xylene	106	13.291	13.310	(1.596)	1478758	10.0000	9.8
37 o-Xylene	106	14.200	14.210		661381	5.00000	4.8
39 Styrene	104	14.215	14.239		971507	5.00000	4.9
40 Bromoform	173	14.611	14.625		100283	5.00000	4.5
41 Isopropylbenzene	105	14.920	14.921		2115569	5.00000	4.9
\$ 42 4-Bromofluorobenzene (SUR)	95	15.213	15.215		742684	5.00000	5.0
43 1,1,2,2 Tetrachloroethane	83	15.405	15.423		223931	5.00000	4.6
45 1,2,3 Trichloropropane	110	15.522	15.526		58928	5.00000	4.7
44 Bromobenzene	156	15.508	15.526		422414	5.00000	4.8
46 n Propylbenzene	91	15.655	15.660		2477527	5.00000	4.9
47 2-Chlorotoluene	91	15.831	15.837	1	1416719	5.00000	4.9
48 1,3,5-Trimethylbenzene	105	15.949	15.956		1572998	5.00000	4.9
49 4-Chlorotoluene	91	15.993	16.016		1533523	5.00000	4.7
			16.535				4.7
50 tert-Butylbenzene	119				1768213	5.00000	
51 1,2,4-Trimethylbenzene	105		16.624		1468526	5.00000	4.8
52 sec-Butylbenzene	1.05	16.934	16.935		2289471	5.00000	5.0
53 m-Dichlorobenzene	146	17.170	17.172		797973	5.00000	4.7
54 4-Isopropyltoluene	1.1.9	17.185	17.202		1980712	5.00000	4.9
55 p-Dichlorobenzene	1.46	17.317	17.334		778312	5.00000	4.7
56 n-Butylbenzene	91	17.994	18.000		1843887	5.00000	4.9
\$ 57 1,2-Dichlorobenzene d4 (SUR)	152	18.023	18.045		425714	5.00000	4.9
58 o-Dichlorobenzene	1.46	18.067	18.074		597715	5.00000	4.6
59 1,2-Dibromo-3-Chloropropane	75	19.611	19.626		24016	5.00000	4.3
60 1,2,4-Trichlorobenzene	180	21.363	21.36Ĭ	(2.565)	404189	5.00000	4.4

Data File: /chem/VOAMS5.i/524/04-13-06/13apr06.b/e41265.d Report Date: 19-Apr-2006 10:19

					AMOUNTS	
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
=======================================	====	==	33232A =====#	======	======	
61 Hexachlorobutadiene	225	21.717	21.717 (2.607)	410317	5.00000	4.9
62 Naphthalene	128	21.924	21.925 (2.632)	370280	5.00000	4.4
63 1,2,3-Trichlorobenzene	180	22.484	22.489 (2.699)	279119	5.00000	4.5
M 38 Xylene (Total)	1.00			2140139	15.0000	15

QC Flag Legend

H - Operator selected an alternate compound hit.

Data File: /chem/WDAMS5.i/524/04-13-06/13apr06.b/e41265.d

Data File: /chem/VOAMS5.i/524/04-13-06/13apr06.b/e41269.d Report Date: 19-Apr-2006 10:20

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file : /chem/VOAMS5.i/524/04-13-06/13apr06.b/e41269.d

Lab Smp Id: ESTD020

Inj Date : 13-APR-2006 10:25

Operator : VOAMS 5 Inst ID: VOAMS5.i

Smp Info : ESTD020

Misc Info : Comment :

Method : /chem/VOAMS5.i/524/04-13-06/13apr06.b/524_2_05.m Meth Date : 19-Apr-2006 10:20 lily Quant Type: ISTD

Cal Date : 13-APR-2006 10:25 Cal File: e41269.d

Als bottle: 5 Calibration Sample, Level: 4

Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value	Description
		
DF	1.00000	Dilution Factor
Vo	25.00000	Sample Volume

Cpnd Variable

Local Compound Variable

					AMOUNTS		
		QUANT SIG				CAL AMT	ON - COL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
=====		====	==	짜유하다라다 그== 교프로	=======	======	======
1	Dichlorodifluoromethane	85	2.924	2.939 (0.351)	2245405	20.0000	19
3	Chloromethane	50	3.247	3.247 (0.389)	1663680	23.0000	19
4	Vinyl Chloride	62	3.438	3.438 (0.412)	1721485	20.0000	20
5	Bromomethane	94	3.952	3.951 (0.474)	1464598	20.0000	1.9
6	Chloroethane	64	4.054	4.069 (0.486)	1124308	20.0000	19
.7	Trichlorofluoromethane	101	4.480	4.479 (0.537)	3048400	20.0000	19
8	1,1-Dichloroethene	61	5.126	5.140 (0.614)	2552135	20.0000	19
111	Freon TF	1.01	5.170	5.184 (0.620)	3162327	20.0000	19
9	Methylene Chloride	84	5.713	5.712 (0.685)	1162987	20.0000	20
109	TBA	59	5.816	5.815 (0.697)	1162201	1000.00	970
110	W.L.B.E.	73	б.036	6.035 (0.724)	1825050	20.0000	19
10	trans 1,2-Dichloroethene	96	6.036	6.050 (0.724)	1706935	20.0000	19
1.1	1,1-Dichloroethane	63	6.506	6.519 (0.780)	3277125	20.0000	19
12	cis-1,2-Dichloroethene	96	7.123	7.136 (0.854)	1630402	20.0000	1.9
13	2,2-Dichloropropane	77	7.152	7.151 (0.857)	2644391	20.0000	19
127	Ethyl Acetate	43	7.167	7.180 (0.859)	791135	40.0000	40 (H)

Data File: /chem/VOAMS5.i/524/04-13-06/13apr06.b/e41269.d Report Date: 19-Apr-2006 10:20

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Con	pounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
		512	==				======
	14 Bromochloromethane	128	7.387	7.386 (0.886)	664764	23.0000	20
	15 Chloroform	83	7.446	7.444 (0.893)	2986154	20.0000	19
	16 l,1,1-Trichloroethane	97	7.681	7.680 (0.921)	2920588	20.0000	19
	17 1,1 Dichloropropene	75	7.828	7.841 (0.938)	2623110	20.0000	19
	18 Carbon Tetrachloride	117	7.857	7.870 (0.942)	2753832	20.0000	19
	20 1,2-Dichloroethane	62	8.048	8.062 (0.965)	1120727	20.0000	19
	19 Benzene	78	8.063	8.062 (0.967)	4797206	20.0000	20
*	2 Fluorobenzene	96	8.342	8.343 (1.000)	1299921	5.00000	(T)
	21 Trichloroethene	95	8.753	8.757 (1.049)	2177633	20.0000	19
	22 1,2-Dichloropropane	63	9.002	9.008 (1.079)	1730873	20.0000	20
	23 Dibromomethane	93	9.149	9.156 (1.097)	- 768422	20.0000	20
	24 Bromodichloromethane	83	9.311	9.318 (1.116)	2233189	20.0000	20
	25 cis-1,3-Dichloropropene	75	9.854	9.865 (1.181)	1954421	20.0000	21
	26 Toluene	92	10.353	10.366 (1.241)	3590977	20.0000	20
	27 trans-1,3-Dichloropropene	75	10.602	10.618 (1.271)	1277377	20.0000	21
	28 1,1,2-Trichloroethane	83	10.910	10.913 (1.308)	708905	20.0000	20
	30 1,3-Dichloropropane	76	11.189	11.208 (1.341)	1441461	20.0000	20
	29 Tetrachloroethene	166	11.233	11.238 (1.347)	2675302	20.0000	20
	31 Dibromochloromethane	129	11.615	11.622 (1.392)	1292332	20.0000	21
	32 1,2-Dibromoethane	107	11.879	11.889 (1.424)	1111218	20.0000	20
	33 Chlorobenzene	112	12.832	12.850 (1.538)	4295435	20.0000	20
	34 1,1,1,2-Tetrachloroethane	1.3.1	12.979	12.983 (1.556)	1844139	20.0000	20
	35 Ethylbenzene	91	13.038	13.042 (1.563)	7866691	20.0000	20
	36 m+p-Xylene	106	13.288	13.310 (1.593)	5954559	40.0000	40
	37 o-Xylene	106	14,212	14.210 (1.704)	2678164	20.0000	20
	39 Styrene	104	14.227	14.239 (1.705)	4015758	20.0000	20
	40 Bromoform	173	14.609	14.625 (1.751)	507094	20.0000	23
	41 Isopropylbenzene	105	14.917	14.921 (1.788)	8405487	20.0000	20
ŝ	42 4-Bromofluorobenzene (SUR)	95	15.211	15.215 (1.823)	752643	5.00000	5.1
٧	43 1,1,2,2-Tetrachloroethane	83	15.416	15.423 (1.848)	957730	20.0000	20
	45 1,2,3-Trichloropropane	110	15.520	15.526 (1.860)	234840	20.0000	19
	44 Bromobenzene	156	15.505	15.526 (1.859)	1734953	20.0000	20
	46 n-Propylbenzene	91	15.652	15,660 (1,876)	9734322	20.0000	19
	47 2-Chlorotoluene	91	15.828	15.837 (1.897)	5641920	20.0000	19
	48 1,3,5-Trimethylbenzene	105	15.946	15.956 (1.912)	6184034	20.0000	19
	49 4-Chlorotoluene	91	16.005	16.016 (1.919)	6205544	20.0000	1. 19
	50 tert-Butylbenzene	119		16.535 (1.982)	6990354	20.0000	20
		105		16.624 (1.993)	5923286	20.0000	19
	51 1,2,4-Trimethylbenzene 52 sec-Butylbenzene	105		16.935 (2.030)	8922386	20,0000	19
	•			17.172 (2.058)	3335603	20.0000	20
	53 m-Dichlorobenzene	146		17.202 (2.061)	7929505	20.0000	20
	54 4-Isopropyltoluene	11.9			3158613	20.0000	19
	55 p-Dichlorobenzene	146	17.329	17.334 (2.077)		20.0000	19
٠,	56 n Butylbenzene	91	17.991	18.000 (2.157)	7275928		5.2
\$	57 1,2-Dichlorobenzene-d4 (SUR)	1.52	18.035	18.045 (2.162)	442533	5.00000	
	58 o-Dichlorobenzene	146	18.065	1.8.074 (2.166)	2529640	20.0000	20
	59 1,2-Dibromo-3-Chloropropane	75	19.609	19.626 (2.351)	116385	20.0000	. 21
	60 1,2,4 Trichlorobenzene	180	21.345	21.361 (2.559)	1786149	20.0000	20

Data File: /chem/VOAMS5.i/524/04-13-06/13apr06.b/e41269.d Report Date: 19-Apr-2006 10:20

					AMOUN	TS
	QUANT SIG				CAL ·· AMT	ON-COL
Compounds	MASS	RТ	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
=======================================	====	==		=m=====		
61 Hexachlorobutadiene	225	21.714	21.717 (2.603)	1658029	20.0000	20
62 Naphthalene	128	21.920	21.925 (2.628)	1557484	20.0000	18
63 1,2,3-Trichlorobenzene	180	22.480	22.489 (2.695)	1221504	20.0000	20
M 38 Xvlene (Total)	100			8632723	60.0000	59

QC Flag Legend

T - Target compound detected outside RT window. H - Operator selected an alternate compound hit.

Date : 13-APR-2006 10:25

Data File: /chem/WOAMS5.i/524/04-13-06/13apr06.b/e41269.d

Data File: /chem/VOAMS5.i/524/04-13-06/13apr06.b/e41268.d

Report Date: 19-Apr-2006 10:19

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file: /chem/VOAMS5.i/524/04-13-06/13apr06.b/e41268.d

Lab Smp Id: ESTD040

Inj Date : 13-APR-2006 09:55 Operator : VOAMS 5 Smp Info : ESTD040 Inst ID: VOAMS5.i

Misc Info :

Comment

: /chem/VOAMS5.i/524/04-13-06/13apr06.b/524_2_05.m Method Quant Type: $\overline{I}S\overline{T}D$ Meth Date : 19-Apr-2006 10:19 lily

Cal File: e41268.d Cal Date : 13-APR-2006 09:55

Als bottle: 4 Calibration Sample, Level: 5

Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vo	25.00000	Sample Volume

Cpnd Variable

Local Compound Variable

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Compo	ounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
			==		======	======	======
:	Dichlorodifluoromethane	85	2.925	2.939 (0.350)	4957224	40.0000	42(A)
:	Chloromethane	50	3.247	3.247 (0.389)	3686834	40.0000	41(A)
4	Vinyl Chloride	62	3.438	3.438 (0.412)	3737934	40.0000	42 (A)
	Bromomethane	94	3.952	3.951 (0.474)	3107884	40.0000	40
	Chloroethane	64	4.055	4.069 (0.486)	2388887	40.0000	39
	Trichlorofluoromethane	101	4.481	4.479 (0.537)	6448486	40.0000	40
8	1,1-Dichloroethene	61	5.126	5.140 (0.614)	5413749	40.0000	39
111	Freon TF	101	5.171	5.184 (0.620)	6407067	40.0000	37
9	Methylene Chloride	84	5.714	5.712 (0.685)	2440860	40.0000	40(A)
109	TBA	59	5.817	5.815 (0.697)	1627058	1500.00	1300
110	MTBE	73	6.037	6.035 (0.724)	3777573	40.0000	38
10	trans-1,2-Dichloroethene	96	6.052	6.050 (0.725)	3583598	40.0000	38
1. 3	1,1 Dichloroethane	63	6.507	6.519 (0.780)	6790540	40.0000	39
12	cis-1,2-Dichloroethene	96	7.124	7.136 (0.854)	3426150	40.0000	38
13	2,2-Dichloropropane	77	7.154	7.151 (0.857)	5600780	40.0000	39
127	Ethyl Acetate	43	7.154	7.180 (0.857)	1759132	80.0000	86 (AH)

Data File: /chem/VOAMS5.i/524/04-13-06/13apr06.b/e41268.d Report Date: 19-Apr-2006 10:19

							AMOUN	TS
		QUANT SIG					CAL-AMT	ON-COL
Com	pounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/L)	(ug/L)
====		====	22					=======
	14 Bromochloromethane	128	7.389	7.386	(0.886)	1382060	40.0000	40
	15 Chloroform	83	7.447	7.444	(0.893)	6264319	40.0000	39
	16 1,1,1 Trichloroethane	97	7.682	7.680	(0.921)	6121717	40.0000	39
	17 l,l-Dichloropropene	75	7.829	7.841	(0.938)	5393413	40.0000	39
	18 Carbon Tetrachloride	117	7.859	7.870	(0.942)	_ 5747611	40.0000	40
	20 1,2-Dichloroethane	62	8.050	8.062	(0.965)	2313273	40.0000	39
	19 Benzene	78	8.065	8.062	(0.967)	9894829	40.0000	39
*	2 Fluorobenzene	96	8.344	8.343	(1.000)	1336952	5.00000	(T)
	21 Trichloroethene	95	8.755	8.757	(1.049)	4444405	40.0000	39
	22 1,2-Dichloropropane	63	9.004	9.008	(1.079)	3540823	40.0000	39
	23 Dibromomethane	93	9.151	9.156	(1.097)	1590422	40.0000	40
	24 Bromodichloromethane	83	9.313	9.318	(1.116)	4684609	40.0000	41(A)
	25 cis-1,3-Dichloropropene	75	9.856	9.865	(1-181)	4108923	40.0000	42(A)
	26 Toluene	92	10.355	10.366	(1.241)	7368434	40.0000	39
	27 trans-1,3-Dichloropropene	75	10.605	10.618	(1.271)	2696761	40.0000	42 (A)
	28 1,1,2-Trichloroethane	83	10.913	10.913	(1.308)	1440676	40.0000	39
	30 1,3-Dichloropropane	76	11.192	11.208	(1.341)	2964127	40.0000	39
	29 Tetrachloroethene	166	11.236	11.238	(1.347)	5455096	40.0000	39
	31 Dibromochloromethane	129	11.618	11.622	(1.392)	2769389	40.0000	45 (A)
	32 1,2-Dibromoethane	107	11.882	11.889	(1.424)	2261798	40.0000	39
	33 Chlorobenzene	112	12.836	12.850	(1.538)	8797529	40.0000	39
	34 1,1,1,2-Tetrachloroethane	131	12.983	12.983	(1.556)	3738668	40.0000	4.0
	35 Ethylbenzene	91	13.042		(1.563)	15678575	40.0000	38
	36 m+p-Xylene	106	13.292		(1.593)	1,2090705	80.0000	78
	37 o-Xylene	106	14.217		(1.704)	5345333	40.0000	38
	39 Styrene	104	14.231		(1.706)	8098492	40.0000	4.0
	40 Bromoform	173	14.613		(1.751)	1109070	40.0000	48 (A)
	41 Isopropylbenzene	105	14.922		(1.788)	16738463	40.0000	38
	42 4 Bromofluorobenzene (SUR)	95		15.215		740181	5.00000	4.8
,	43 1,1,2,2-Tetrachloroethane	83	15,406		(1.846)	1957948	40,0000	39
	45 1,2,3-Trichloropropane	110	15.524		(1.861)	479531	40.0000	38
	44 Bromobenzene	156	15.510		(1.859)	3474922	40.0000	39
	46 n-Propylbenzene	91	15.657		(1.876)	19496416	40.0000	38
	47 2-Chlorotoluene	91	15.833		(1.898)	11221778	40.0000	38
	48 1,3,5-Trimethylbenzene	105	15.951		(1.912)	12398518	40.0000	38
	49 4-Chlorotoluene	91	16.010		(1.919)	12463300	40.0000	37
	50 tert Butylbenzene	119	16.540		(1,982)	14006341	40.0000	38
	51 1,2,4-Trimethylbenzené	105	16.613		(1.991)	11785743	40.0000	38
	52 sec-Butylbenzene	105	16.937		(2.030)	17730715	40.0000	38
	53 m-Dichlorobenzene	146	17.172		(2.058)	6650199	40.0000	38
	54 4-Isopropyltoluene	119	17.202		(2.062)	15764201	40.0000	38
	55 p-Dichlorobenzene	146	17.335		(2.078)	6437496	40.0000	38
	56 n-Butylbenzene	91	17.997		(2.157)	14502349	40.0000	38
	55 1,2-Dichlorobenzene-d4 (SUR)	152	18.026		(2.157)	442765	5.00000	5.0
	58 o-Dichlorobenzene	146	18.070		(2.166)	4988274	40.0000	38
	59 1,2-Dibromo 3-Chloropropane	75	19.615		(2.351)	249150	40.0000	44 (A)
	22 1,2 M.O.O.O.O. 2 CHIOLOPKOPAHE	180	21.351		(2.559)	3502224	40.0000	38

Data File: /chem/VOAMS5.i/524/04-13-06/13apr06.b/e41268.d Report Date: 19-Apr-2006 10:19

					NUOMA	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
		===		======		======
61 Hexachlorobutadiene	225	21.720	21.717 (2.603)	3257474	40.0000	3.8
62 Naphthalene	128	21.912	21.925 (2.626)	3033789	40.0000	3 5
63 1,2,3-Trichlorobenzene	180	22.487	22.489 (2.695)	2324690	40.0000	37
M 38 Xylene (Total)	100			~ 17436038	120.000	120

QC Flag Legend

- T Target compound detected outside RT window.
 A Target compound detected but, quantitated amount exceeded maximum amount.
- H Operator selected an alternate compound hit.

Data File: /chem/WOAMS5.i/524/04-13-06/13apr06.b/e41268.

VOLATILE ORGANICS INITIAL CALIBRATION DATA METHOD 524.2

Instrument ID: VOAMS5 Calibration Date(s): 04/13/06 04/13/06

Heated Purge: (Y/N) N Calibration Time(s): 1055 1225

LAB FILE ID: RRF5: E41273 RRF20: E41270 RRF40: E41272

COMPOUND	RRF5	RRF20	RRF40
Acetone	0.009	0.010	0.010
2-Butanone	0.033	0.031	
4-Methyl-2-pentanone	0.078	0.083	0.089
2-Hexanone	0.050	0.051	0.051
Carbon Disulfide	0.655	0.805	0.679
Diethyl Ether	0.121	0.120	0.114
Iodomethane	0.594	0.628	0.596
Allyl Chloride	0.135	0.163	0.125
Acrylonitrile	0.011	0.013	0.013
Propionitrile	0.004	0.005	0.005
Methyl Acrylate	0.079	0.085	0.086
Methacrylonitrile	0.022	0.020	0.023
Tetrahydrofuran	0.007	0.006	0.005
1-Chlorobutane	0.727	0.709	0.728
Methyl Methacrylate	0.073	0.068	0.078
2-Nitropropane	0.022	0.023	0.022
Chloroacetonitrile	0.001	0.001	0.001
1,1-Dichloropropanone	0.068	0.064	0.058
Ethyl Methacrylate	0.148	0.138	0.160
trans-1,4-Dichloro-2-butene	0.006	0.006	0.006
Pentachloroethane	0.181	0.215	0.202
Hexachloroethane	0.326	0.398	0.363
Nitrobenzene	0.001	0.001	0.001
=======================================	=======	=======	=======
4-Bromofluorobenzene (SUR)	0.580	0.582	0.579
1,2-Dichlorobenzene-d4 (SUR)	0.331	0.338	0.326

VOLATILE ORGANICS INITIAL CALIBRATION DATA (cont'd) METHOD 524.2

Instrument ID: VOAMS5 Calibration Date(s): 04/13/06 04/13/06

Heated Purge: (Y/N) N Calibration Time(s): 1055 1225

COMPOUND	CURVE	COEFFICENT A1	%RSD OR R^2
COMPOUND	CORVE	A1	OR R Z
Acetone	AVRG	0.00972804	i i
2-Butanone	AVRG	0.03145553	
4-Methyl-2-pentanone	AVRG	0.03143333	
2-Hexanone	AVRG	0.05086821	0.8*
Carbon Disulfide	AVRG	0.71335368	
Diethyl Ether	AVRG	0.11811807	
Iodomethane	AVRG	0.60594331	3.2*
Allyl Chloride	AVRG	0.14108796	14.0*
Acrylonitrile	AVRG	0.01252772	
Propionitrile	AVRG	0.00469526	
Methyl Acrylate	AVRG	0.08326767	4.6*
Methacrylonitrile	AVRG	0.02186944	5.8*
Tetrahydrofuran	AVRG	0.00627779	16.9*
1-Chlorobutane	AVRG	0.72138846	1.5*
Methyl Methacrylate	AVRG	0.07296656	7.0*
2-Nitropropane	AVRG	0.02235693	2.5*
Chloroacetonitrile	AVRG	0.00081587	15.6*
1,1-Dichloropropanone	AVRG	0.06329789	7.6*
Ethyl Methacrylate	AVRG	0.14867811	7.2*
trans-1,4-Dichloro-2-butene	AVRG	0.00586828	3.6*
Pentachloroethane	AVRG	0.19952198	8.5*
Hexachloroethane	AVRG	0.36263762	9.9*
Nitrobenzene	AVRG	0.00081698	19.9*
	=====	========	=======
4-Bromofluorobenzene (SUR)	AVRG	0.58025739	0.3*
1,2-Dichlorobenzene-d4 (SUR)	AVRG	0.33160459	1.8*

^{*} Compound with required maximum % RSD value.
** Compound with required minimum RRF value.

Data File: /chem/VOAMS5.i/524-R4/04-13-06/13apr06.b/e41273.d

Report Date: 19-Apr-2006 10:22

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file : /chem/VOAMS5.i/524-R4/04-13-06/13apr06.b/e41273.d

Lab Smp Id: ESTD005-R4

Inj Date : 13-APR-2006 12:25 Operator : VOAMS 5 Smp Info : ESTD005-R4 Inst ID: VOAMS5.i

Misc Info :

Comment

Method : /chem/VOAMS5.i/524-R4/04-13-06/13apr06.b/524R4_04.m Meth Date : 19-Apr-2006 10:22 lily Quant Type: ISTD Quant Type: ISTD Cal File: e41273.d Cal Date : 13-APR-2006 12:25

Calibration Sample, Level: 3 Als bottle: 4

Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vo	25.00000	Sample Volume

Cpnd Variable

Local Compound Variable

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	====	==	===== =====		m=====	======
125 Diethyl Ether	59	4.816	4.801 (0.577)	162412	5.00000	5.1
113 Acetone	43	5.212	5.197 (0.625)	11831	5.00000	4.5
126 Iodomethane	142	5.344	5.329 (0.641)	79959 9	5.00000	4.9
120 Carbon Disulfide	76	5.432	5.432 (0.651)	882424	5.00000	4 .6
127 Allyl Chloride	76	5.579	5.564 (0.669)	182426	5.00000	4.8
128 Acrylonitrile	52	6.004	5.990 (0.720)	152234	50.0000	4.5
114 2 Butanone	43	7.134	7.135 (0.855)	44168	5.00000	5.2
129 Propionitríle	54	7.207	7.194 (0.864)	55493	50,0000	44
130 Methyl Acrylate	55	7.222	7.208 (0.866)	106244	5.00000	4.7
131 Methacrylonitrile	67	7.369	7.355 (0.883)	30323	5.00000	5.1
132 Tetrahydrofuran	71	7.457	7.458 (0.894)	10060	5.00000	6.0
133 1-Chlorobutane	56	7.765	7.751 (0.931)	978568	5.00000	5 - 0
* 2 Fluorobenzene	96	8.341	8.338 (1.000)	1346448	5.00000	
134 Methyl Methacrylate	69	9.067	9.057 (1.087)	98450	5.00000	5.0
136 Chloroacetonitrile	48	9.570	9.556 (1.147)	9168	50.0000	42
135 2-Nitropropane	43	9.556	9.556 (1.146)	294060	50.0000	49

Data File: /chem/VOAMS5.i/524-R4/04-13-06/13apr06.b/e41273.d Report Date: 19-Apr-2006 10:22

				*		NUOMA	ITS
		QUANT SIG				CAL AMT	ON-COL
Compounds		MASS	RT	EXP RT REL R	response	(ug/L)	(ug/L)
	=======	====	==	=======================================			======
115 4-Methyl-2-	pentanone	43	10.029	10.025 (1.20	2) 105333	5.00000	4.7
137 1,1-Dichlor	opropanone	43	10.118	10.113 (1.21	91023	5.00000	5.3
138 Ethyl Metha	crylate	69	10.680	10.670 (1.28	199206	5.00000	5.0
119 2-Hexanone		43	11.286	11.257 (1.35	3) 67936	5.00000	5.0
\$ 42 4-Bromofluo	robenzene (SUR)	95	15.216	15.215 (1.82	1) 780807	5.00000	5.0
139 trans-1,4-E	ichloro-2-butene	53	15.539	15.524 (1.86	3) 7708	5.00000	4.9
140 Pentachloro	ethane	167	16.581	16.581 (1.98	3) 244147	5.00000	4.5
\$ 57 1,2-Dichlor	obenzene-d4 (SUR)	152	18.036	18.037 (2.16	2) 446063	5.00000	5.0
141 Hexachloroe	thane	117	18.624	18,625 (2.23	3) 439601	5.00000	4.5
142 Nitrobenzen	ie	51	20.035	20.038 (2.40)	2) 8522	50.0000	39

Data File: /chem/VOAMS5.i/524-R4/04-13-Q6/13apr06.b/e41270.d Report Date: 19-Apr-2006 10:22

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file : /chem/VOAMS5.i/524-R4/04-13-06/13apr06.b/e41270.d

Lab Smp Id: ESTD020-R4

Inj Date : 13-APR-2006 10:55

Inst ID: VOAMS5.i Operator : VOAMS 5

Smp Info : ESTD020-R4

Misc Info :

Comment

Method : /chem/VOAMS5.i/524-R4/04-13-06/13apr06.b/524R4_04.m Meth_Date : 19-Apr-2006 10:22 lily Quant Type: ISTD

Cal Date : 13-APR-2006 10:55 Cal File: e41270.d

Als bottle: 6 Calibration Sample, Level: 4

Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all.sub

Target Version: Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vo	25.00000	Sample Volume

Local Compound Variable Cpnd Variable

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON. COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	====	==	MERSER ESE		======	======
125 Diethyl Ether	59	4.801	4.801 (0.576)	641020	20.0000	20
113 Acetone	43	5.197	5.197 (0.623)	55560	20.0000	21
126 Iodomethane	1.42	5.329	5.329 (0.639)	3348804	20.0000	21
120 Carbon Disulfide	76	5.432	5.432 (0.651)	4294368	20.0000	22
127 Allyl Chloride	76	5.564	5.564 (0.667)	868972	20.0000	23
128 Acrylonitrile	52	5.990	5.990 (0.718)	687626	200.000	200
114 2-Butanone	43	7.135	7.135 (0.856)	164983	20.0000	20
129 Propionitrile	54	7.194	7.194 (0.863)	254111	200.000	200
130 Methyl Acrylate	55	7.208	7.208 (0.864)	452589	20.0000	20
131 Methacrylonitrile	67	7.355	7.355 (0.882)	108840	20.0000	. 19
132 Tetrahydrofuran	71	7.458	7.458 (0.894)	31586	20.0000	19
133 1-Chlorobutane	56	7.751	7.751 (0.930)	3779826	20.0000	20
* 2 Fluorobenzene	96	8.338	8.338 (1.000)	1332934	5.00000	
134 Methyl Methacrylate	69	9.057	9.057 (1.086)	361519	20.0000	18
136 Chloroacetonitrile	48	9.556	9.556 (1.146)	44397	200.000	200
135 2-Nitropropane	43	9.556	9,556 (1.146)	1222866	200.000	200

Data File: /chem/VOAMS5.i/524-R4/04-13-06/13apr06.b/e41270.d Report Date: 19-Apr-2006 10:22

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COT
Co	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
22 2	± @ ± £ £ £ £ 7 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	====	==			======	=======
	115 4-Methyl-2-pentanone	43	10.025	10.025 (1.202)	441251	20.0000	20
	137 1,1 Dichloropropanone	43	10.113	10.113 (1.213)	342280	20.0000	20
	138 Ethyl Methacrylate	69	10.670	10.670 (1.280)	737319	20.0000	19
	119 2-Hexanone	43	11.257	11.257 (1.350)	273564	20.0000	20
\$	42 4-Bromofluorobenzene (SUR)	95	15.215	15.215 (1.825)	775747	5.00000	5.0
	139 trans-1,4-Dichloro-2-butene	53	15.524	15.524 (1.862)	32592	20.0000	21
	140 Pentachloroethane	167	16.581	16.581 (1.989)	1145102	20.0000	22
\$	57 1,2-Dichlorobenzene-d4 (SUR)	152	18.037	18.037 (2.163)	450288	5.00000	5.1
	141 Hexachloroethane	117	18.625	18.625 (2.234)	2123924	20.0000	22
	143 Nitrobonzone	51	20 038	20 038 (2 403)	50143	200.000	230

Data File: /chem/VOAMS5.i/524-R4/04-13-06/13apr06.b/e41272.d Report Date: 19-Apr-2006 10:22

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file : /chem/VOAMS5.i/524-R4/04-13-06/13apr06.b/e41272.d Lab Smp Id: ESTD040-R4

Inj Date : 13-APR-2006 11:55
Operator : VOAMS 5
Smp Info : ESTD040-R4 Inst ID: VOAMS5.i

Misc Info : Comment

Method : /chem/VOAMS5.i/524-R4/04-13-06/13apr06.b/524R4_04.m Meth Date : 19-Apr-2006 10:22 lily Quant Type: ISTD

Cal Date : 13-APR-2006 11:55 Cal File: e41272.d

Als bottle: 3 Calibration Sample, Level: 5

Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name Value		Description
DF Vo	1.00000	Dilution Factor Sample Volume

Cpnd Variable

Local Compound Variable

Compounds RT EXP RT REL RT RESPONSE (ug/L) (ug/L) 125 Diethyl Ether 59 4.802 4.801 (0.576) 1256610 40.0000 38 113 Acetone 43 5.198 5.197 (0.623) 110452 40.0000 41(A) 126 Iodomethane 142 5.330 5.329 (0.639) 6597035 40.0000 39 120 Carbon Disulfide 76 5.432 5.432 (0.652) 752038 40.0000 35 127 Allyl Chloride 76 5.564 5.564 (0.667) 1381619 40.0000 35 128 Acrylonitrile 52 5.990 5.990 (0.718) 1481299 400.000 430 (A)
125 Diethyl Ether 59 4.802 4.801 (0.576) 1256610 40.0000 38 113 Acetone 43 5.198 5.197 (0.623) 110452 40.0000 41(A) 126 Iodomethane 142 5.330 5.329 (0.639) 6597035 40.0000 39 120 Carbon Disulfide 76 5.432 5.432 (0.652) 7520038 40.0000 38 127 Allyl Chloride 76 5.564 5.564 (0.667) 1381619 40.0000 35 128 Acrylonitrile 52 5.990 5.990 (0.718) 1481299 400.000 430(A)
125 Diethyl Ether 59 4.802 4.801 (0.576) 1256610 40.0000 38 113 Acetone 43 5.198 5.197 (0.623) 110452 40.0000 41(A) 126 Iodomethane 142 5.330 5.329 (0.639) 6597035 40.0000 39 120 Carbon Disulfide 76 5.432 5.432 (0.652) 7520038 40.0000 38 127 Allyl Chloride 76 5.564 5.564 (0.667) 1381619 40.0000 35 128 Acrylonitrile 52 5.990 5.990 (0.718) 1481299 400.000 430 (A)
113 Acetone 43 5.198 5.197 (0.623) 110452 40.0000 41(A) 126 Iodomethane 142 5.330 5.329 (0.639) 6597035 40.0000 39 120 Carbon Disulfide 76 5.432 5.432 (0.652) 7520038 40.0000 38 127 Allyl Chloride 76 5.564 5.564 (0.667) 1381619 40.0000 35 128 Acrylonitrile 52 5.990 5.990 (0.718) 1481299 400.000 430(A)
126 Iodomethane 142 5.330 5.329 (0.639) 6597035 40.0000 39 120 Carbon Disulfide 76 5.432 5.432 (0.652) 7520038 40.0000 38 127 Allyl Chloride 76 5.564 5.564 (0.667) 1381619 40.0000 35 128 Acrylonitrile 52 5.990 5.990 (0.718) 1481299 400.000 430 (A)
120 Carbon Disulfide 76 5.432 5.432 (0.652) 7520038 40.0000 38 127 Allyl Chloride 76 5.564 5.564 (0.667) 1381619 40.0000 35 128 Acrylonitrile 52 5.990 5.990 (0.718) 1481299 400.000 430 (A)
127 Allyl Chloride 76 5.564 5.564 (0.667) 1381619 40.0000 35 128 Acrylonitrile 52 5.990 5.990 (0.718) 1481299 400.000 430(A)
128 Acrylonitrile 52 5.990 5.990 (0.718) 1481299 400.000 430(A)
114 2-Butanone 43 7.120 7.135 (0.854) 338991 40.0000 39
129 Propionitrile 54 7.194 7.194 (0.863) 575508 400.000 440 (λ)
130 Methyl Acrylate 55 7.208 7.208 (0.864) 952222 40.0000 41(A)
133 Methacrylonitrile 67 7.355 7.355 (0.882) 251024 40.0000 41(λ)
132 Tetrahydrofuran 71 7.443 7.458 (0.893) 60201 40.0000 35
133 1-Chlorobutane 56 7.751 7.751 (0.930) 8064779 40.0000 40(A)
* 2 Fluorobenzene 96 8.338 8.338 (1.000) 1383878 5.00000
134 Methyl Methacrylate 69 9.057 9.057 (1.086) 863277 40.0000 43(A)
136 Chloroacetonitrile 48 9.541 9.556 (1.144) 103406 400.000 460(A)
135 2-Nitropropane 43 9.555 9.556 (1.146) 2468339 400.000 400

Data File: /chem/VOAMS5.i/524-R4/04-13-06/13apr06.b/e41272.d Report Date: 19-Apr-2006 10:22

						AMOUN	TS	
			QUANT SIG				CAL-AMT	ON-COL
	Compour	nds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
			====	==	========	<u> </u>	======	======
	115	4-Methyl-2-pentanone	43	10.025	10.025 (1.202)	985297	40.0000	43 (A)
	137	l,l-Dichloropropanone	43	10.113	10.113 (1.213)	643167	40.0000	. 37
	138 I	Ethyl Methacrylate	69	1.0 - 670	10.670 (1.280)	1769109	40.0000	43(A)
	119	2-Hexanone	43	11.257	11.257 (1.350)	562854	40.0000	40
	\$ 42 4	4-Bromofluorobenzene (SUR)	95	15.216	15.215 (1.825)	801108	5.00000	5.0
	139 t	trans-1,4-Dichloro-2-butene	53	15.525	15.524 (1.862)	63850	40.0000	39
	140 I	Pentachloroethane	167	16.574	16.581 (1.988)	2241531	40.0000	40(A)
	\$ 57 3	1,2-Dichlorobenzene-d4 (SUR)	152	18.038	18.037 (2.163)	450740	5.00000	4.9
	141 F	Hexachloroethane	117	18.630	18.625 (2.234)	4019539	40.0000	40(A)
	142 1	Nitrobenzene	51	20.035	20.038 (2.403)	97155	400.000	430(A)

QC Flag Legend

A - Target compound detected but, quantitated amount exceeded maximum amount.

Surrogate Compound Recovery Summary

VOLATILE SYSTEM MONITORING COMPOUND RECOVERY METHOD 524.2

Matrix: WATER Level: DW Lab Job No: 1741

	LAB	Sl	S2	S 3	OTHER	TOT
					OTHER	
	SAMPLE NO.	#	#	#		OUT
0 -	104100	=====	=====	=====	=====	===
01	1741BS	101	100			0
02	EV103	101	97			0
03	1741BSD	98	97			0
04						
05						
06						
07						
80						
09						
10						
11						
12						
13						
14			 			
15						
16						
17						
18						
19						
20	-					
21					·	
22						
23						
24						
25						
26						
27						
28						
29						
30						
,		·				

S1 = 4-Bromofluorobenzene (70-130) S2 = 1,2-Dichlorobenzene-d4 (70-130)

- # Column to be used to flag recovery values
- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

page 1 of 1

VOLATILE SYSTEM MONITORING COMPOUND RECOVERY METHOD 524.2

Matrix: WATER Level: DW Lab Job No: Q266

						,
	LAB	S1	S2	S3	OTHER	TOT
	SAMPLE NO.	#	#	#		OUT
	========	=====	=====	=====	=====	===
01	EV103	101	97			0
02	EV103A	98	95			Ö
03	725183	96	96			ő
04	725183	99	98			0
05	123103	22	20			ا
05						
06						
07						
80						
09			<u></u>			
10						
11						
12						
13						
14					******	
15						
16						
17						
						lI
18						
19			· 			
20						
21						ll
22			=			
23			:			
24						
25						
26						
27						
28						
29	-					
30				l	l	

S1 = 4-Bromofluorobenzene (70-130) S2 = 1,2-Dichlorobenzene-d4 (70-130)

- # Column to be used to flag recovery values
- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

page 1 of 1

VOLATILE SYSTEM MONITORING COMPOUND RECOVERY METHOD 524.2

Matrix: WATER Level: DW Lab Job No: 1743

	T 7.D	<u> </u>		7.00	AMILIA	I mom I
	LAB	S1 "	S2 "	S3 "	OTHER	TOT
	SAMPLE NO.	#	#	#		OUT
	========	=====	======	=====	=====	===
01	1743BS-R4	98	96			0
02	EV103A	98	95			0
03	1743BSD-R4	97	95			0
04						
05						
06				l ———		
07				·		
08						
09				l		
10	 ;					
10						
11						
12						ll
13				l		ll
14						
15						
16						
17						
18						
19						
20						<u> </u>
21	_ -	· — — —				
22						
22		. ———				
23						
24						<u> </u>
25						
26						1
27						
28						
29					-	
30						
		''		I 	·	''

S1 = 4-Bromofluorobenzene (70-130) S2 = 1,2-Dichlorobenzene-d4 (70-130)

- # Column to be used to flag recovery values
- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

page 1 of 1

Spike Recovery Summary

VOLATILE BLANK SPIKE/BLANK SPIKE DUPLICATE RECOVERY SUMMARY METHOD 524.2

Matrix: WATER QA Batch: 1741

Level: DW

	SPIKE	BS	BSD	
	ADDED	8	ું ક	
Compound	(ug/L)	REC.	REC.	RPD
Dichlorodifluoromethane	2.0	100	95	5.1
Chloromethane	2.0	100 - 95	95	0.0
Vinyl Chloride Bromomethane	2.0	100 100	100	0.0
Chloroethane	2.0	105	100	0.0
Trichlorofluoromethane	2.0	105	95	10.0
1,1-Dichloroethene	2.0	115 120	110	4.4
Methylene Chloride	2.0		110	8.7
trans-1,2-Dichloroethene	2.0	110 110	105 105	4.7
1,1-Dichloroethane cis-1,2-Dichloroethene	2.0	105	100	4.7
			i)
2,2-Dichloropropane Bromochloromethane	2.0	110 115	80 105	31.6
Chloroform	2.0	110	105	9.1
	2.0	110	105	4.7
1,1,1-Trichloroethane 1,1-Dichloropropene	2.0		95	5.1
Carbon Tetrachloride	2.0 2.0	100 100	95	5.1
Benzene	2.0	110	105	4.7
1,2-Dichloroethane	2.0	110	110	0.0
Trichloroethene	2.0	105	100	1
1,2-Dichloropropane	2.0	110	110	4.9
Dibromomethane	2.0	110		4.7
Bromodichloromethane			105 95	
	2.0	95	95 95	0.0
cis-1,3-Dichloropropene Toluene	2.0	100 110	105	5.1 4.7
trans-1,3-Dichloropropen	2.0	100	85	16.2
1,1,2-Trichloroethane	2.0	125	105	17.4
Tetrachloroethene		100	95	5.1
1,3-Dichloropropane	2.0	105	100	4.9
Dibromochloromethane	2.0		85	6.1
1,2-Dibromoethane	2.0	110	100	9.5
Chlorobenzene	2.0	110	100	9.5 9.5
1,1,1,2-Tetrachloroethan	2.0	110	100	9.5 9.5
Ethylbenzene	2.0	110	100	9.5
Xylene (Total)	6.0	107	98	9.5 8.1
Styrene (10tal)	2.0	90	98 85 :	8.1 5.7
pc Arene	۷. ۷	<i>5</i> 0	00	5./

^{*} Values outside of QC limits

VOLATILE BLANK SPIKE/BLANK SPIKE DUPLICATE RECOVERY SUMMARY METHOD 524.2

Matrix: WATER QA Batch: 1741

Level: DW

	SPIKE ADDED	BS %	BSD %	
Compound	(ug/L)	REC.	REC.	RPD
	=======	==== ===	=======	=== =====
Bromoform	2.0	75	75	0.0
Isopropylbenzene	2.0	100	95	5.1
1,1,2,2-Tetrachloroethan	2.0	110	100	9.5
Bromobenzene	2.0	105	95	10.0
1,2,3-Trichloropropane	2.0	105	1.00	4.9
n-Propylbenzene	2.0		95	10.0
2-Chlorotoluene	2.0	105	100	4.9 _
1,3,5-Trimethylbenzene	2.0	105	100	4.9
4-Chlorotoluene	2.0	105	95	10.0
tert-Butylbenzene	2.0	105	95	10.0
1,2,4-Trimethylbenzene	2.0	105	95	10.0
sec-Butylbenzene	2.0	100	90	10.5
m-Dichlorobenzene	2.0	105	95	10.0
4-Isopropyltoluene	2.0	100	95	5.1
p-Dichlorobenzene	2.0	105	95	10.0
n-Butylbenzene	2.0	100	90	10.5
o-Dichlorobenzene	2.0	105	100	4.9
1,2-Dibromo-3-Chloroprop	2.0	110	120	8.7
1,2,4-Trichlorobenzene	2.0	90	90	0.0
Hexachlorobutadiene	2.0	100	90	10.5
Naphthalene	2.0	100	95	5.1
1,2,3-Trichlorobenzene	2.0	90	90	0.0
MTBE	2.0	105	100	4.9

^{*} Values outside of QC limits

Data File: /chem/VOAMS5.i/524/04-13-06/13apr06.b/e41274.d

Report Date: 19-Apr-2006 10:20

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file : /chem/VOAMS5.i/524/04-13-06/13apr06.b/e41274.d

Lab Smp Id: 1741BS Client Smp ID: 1741BS

Inj Date : 13-APR-2006 13:03

Operator : VOAMS 5 Inst ID: VOAMS5.i

Operator : VOAMS 5 Smp Info : 1741BS

Misc Info : Comment :

Method : /chem/VOAMS5.i/524/04-13-06/13apr06.b/524_2_05.m Meth Date : 19-Apr-2006 10:20 lily Quant Type: TSTD Cal Date : 13-APR-2006 10:25 Cal File: e41269.d

Als bottle: 2 QC Sample: BS

Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: 524.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name Value		Description
DF	1.00000	Dilution Factor
Vo	25.00000	Sample Volume

Cpnd Variable Local Compound Variable

					CONCENTRA	RMOITA
	QUANT SIC				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
=======================================	====	==			======	x=====
1 Dichlorodifluoromethane	85	2.925	2.939 (0.351)	247696	2.01395	2.0
3 Chloromethane	50	3.233	3.247 (0.388)	174474	1.90554	1.9
4 Vinyl Chloride	62	3.424	3.438 (0.411)	185548	2:02831	2.0
5 Bromomethane	94	3.937	3.951 (0.472)	163827	2.04106	2.0
6 Chloroethane	64	4.054	4.069 (0.486)	133139	2.13257	2.1
7 Trichlorofluoromethane	101	4.465	4.479 (0.535)	347548	2.08166	2.1
8 1,1-Dichloroethene	61	5.111	5.140 (0.613)	327840	2.31020	2.3
9 Methylene Chloride	84	5.698	5.712 (0.683)	151427	2.41384	2.4
110 MTBE	73	6.021	6.035 (0.722)	218456	2.14592	2.1
10 trans-1,2-Dichloroethene	96	6.035	6.050 (0.724)	209984	2.17407	2.2
11 1,1-Dichloroethane	63	6.505	6.519 (0.780)	397551	2.22784	2.2
12 cis-1,2-Dichloroethene	96	7.121	7.136 (0.854)	193590	2.10541	2.1
13 2,2-Dichloropropane	77	7.135	7.151 (0.856)	330317	2.21643	2.2
14 Bromochloromethane	1.28	7.370	7.386 (0.884)	81934	2.29070	2.3
15 Chloroform	83	7.429	7.444 (0.891)	358921	2.18704	2.2
16 1,1,1-Trichloroethane	97	7.664	7.680 (0.919)	351741	2.20181	2.2

Data File: /chem/VOAMS5.i/524/04-13-06/13apr06.b/e41274.d Report Date: 19-Apr-2006 10:20

					CONCENTRATIONS		
	QUANT SIG					ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/L)	(ug/L)
=======================================	====	==				======	
17 1,1-Dichloropropene	75	7.825	7.841	(0.938)	284740	1.97993	2.0
18 Carbon Tetrachloride	117	7.855	7.870	(0.942)	293000	1.95658	2.0
19 Benzene	78	8,060	8.062	(0.967)	- 574147	2.20728	2.2
20 1,2-Dichloroethane	62	8.045	8.062	(0.965)	137455	2.25056	2.2
* 2 Fluorobenzene	96	8.339	8.343	(1.000)	1377579	5.00000	
21 Trichloroethene	95	8.749	8.757	(1.049)	253432	2.13909	2.1
22 1,2-Dichloropropane	63	8.999	9.008	(1.079)	208258	2.25464	2.2
23 Dibromomethane	93	9.145	9.156	(1.097)	90544	2.20601	2.2
24 Bromodichloromethane	83	9.292	9.318	(1.114)	221008	1.88999	1.9
25 cis-1,3-Dichloropropene	75	9.850	9.865	(1.181)	200648	2.01471	2.0
26 Toluene	92	10.348	10.366	(1.241)	418163	2.17296	2.2
27 trans-1,3-Dichloropropene	75	10.597	10.618	(1.271)	128154	1.95071	2.0
28 1,1,2-Trichloroethane	83	10.905	10.913	(1.308)	95744	2.49345	2.5
29 Tetrachloroethene	1.66	11.213	11.238	(1.345)	295747	2.03808	2.0
30 1,3 Dichloropropane	76	11.199	11.208	(1.343)	164376	2.11648	2.1
31 Dibromochloromethane	129	11.610	11.622	(1.392)	104329	1.63776	1.6
32 1,2-Dibromoethane	107	11.888	11.889	(1.426)	129739	2.16693	2.2
33 Chlorobenzene	112	12.841	12.850	(1.540)	510662	2.20591	2.2
34 1,1,1,2-Tetrachloroethane	131	12.973	12.983	(1.556)	209022	2.15924	2.2
35 Ethylbenzene	91	13.032	13.042	(1.563)	921784	2.17320	2.2
M 38 Xylene (Total)	100				985802	6.38213	6.4
36 m+p-Xylene	1.06	13.296	13.310	(1.594)	683104	4.28985	4.3
37 o Xylene	106	14.205	14.210	(1.703)	302698	2.08881	2.1
39 Styrene	104	14.234	14.239	(1.707)	386254	1.83060	1.8
40 Bromoform	173	14.615	14.625	(1.753)	35125	1.48779	1.5
41 Isopropylbenzene	105	14.923	14.921	(1.790)	928994	2.05355	2.0
\$ 42 4-Bromofluorobenzene (SUR)	95	15.217	15.215	(1.825)	794896	5.04874	5.0
43 1,1,2,2-Tetrachloroethane	83	15.423	15.423	(1.850)	1,11592	2.15433	2.2
45 1,2,3 Trichloropropane	110	15.525	15.526	(1.862)	28132	2.13733	2.1
44 Bromobenzene	156	15.525	15.526	(1.862)	195920	2.12045	2.1
46 n-Propylbenzene	91	15.658		(1.878)	1114767	2.09292	2 . 1,
47 2 Chlorotoluene	91	15.834	15.837	(1.899)	660507	2.14560	2.1
48 1,3,5-Trimethylbenzene	105	15.952		(1.913)	707121	2.08939	2.1
49 4-Chlorotoluene	91	16.011	16.016	(1.920)	726618	2,12073	2.1
50 tert-Butylbenzene	119	16.539	16.535	(1.983)	794139	2.09068	2.1
51 1,2,4 Trimethylbenzene	105	16.628		(1.994)	691577	2.13886	2.1
52 sec-Butylbenzene	105	16.936		(2.031)	949877	1.95065	2.0
54 4-Isopropyltoluene	119	17.201		(2.063)	882537	2.05049	2.0
53 m-Dichlorobenzene	146	17.171		(2.059)	370145	2.06528	2.1
55 p-Dichlorobenzene	1.46	17.333		(2.079)	361990	2.08303	2.1
56 n-Butylbenzene	91	17.994		(2.158)	787046	1.97583	2.0
\$ 57 1,2-Dichlorobenzene-d4 (SUR		18.039		(2.163)	456207	5.01828	5.0
58 o-Dichlorobenzene	146	18.068		(2.167)	288880	2.10993	2.1
59 1,2-Dibromo-3-Chloropropane		19.611		(2.352)	12947	2.19658	2.2
60 1,2,4-Trichlorobenzene	180	21.361		(2.562)	176906	1.84526	1.8
61 Hexachlorobutadiene	225	21.729		(2.606)	174603	1.96045	2.0
62 Naphthalene	128	21.936		(2.631)	173924	1.95728	2.0
implication	120	21.730	41.743	(2.031)	1/3/21	1.55720	2.0

Data File: /chem/VOAMS5.i/524/04-13-06/13apr06.b/e41274.d Report Date: 19-Apr-2006 10:20

					CONCENTRA	TIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	====	==		====:====		
63 1,2,3-Trichlorobenzene	180	22.495	22.489 (2.698)	119442	1.82955	1.8

File: /chem/VOAMS5.i/524/04-13-06/13apr06.b/e41274.d

Data File: /chem/VOAMS5.i/524/04-13-06/13apr06.b/e41286.d Report Date: 19-Apr-2006 10:20

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file : /chem/VOAMS5.i/524/04-13-06/13apr06.b/e41286.d

Lab Smp Id: 1741BSD

Inj Date : 13-APR-2006 19:06

Inst ID: VOAMS5.i Operator : VOAMS 5

Smp Info : 1741BSD

Misc Info :

Comment

Method : /chem/VOAMS5.i/524/04-13-06/13apr06.b/524_2_05.m

Meth Date : 19-Apr-2006 10:20 lily Quant Type: TSTD

Cal Date : 13-APR-2006 10:25 Cal File: e41269.d

Als bottle: 22 QC Sample: BSD

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: 52

Compound Sublist: 524.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value	Description
DF Vo	1.00000	Dilution Factor Sample Volume

Cpnd Variable

Local Compound Variable

					CONCENTRA	RIONS
	QUANT SIG				ON · COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
**************************************	====	==	====== ======	======	=======	
1 Dichlorodifluoromethane	85	2.924	2.939 (0.351)	226681	1.86303	1.9
3 Chloromethane	50	3.247	3.247 (0.389)	174388	1.92521	1.9
4 Vinyl Chloride	62	3.438	3.438 (0.412)	178740	1.97503	2.0
5 Bromomethane	94	3.951	3.951 (0.474)	159306	2.00621	2.0
6 Chloroethane	64	4.068	4.069 (0.488)	120517	1.95128	2.0
7 Trichlorofluoromethane	101	4.494	4.479 (0.539)	317881	1.92457	1.9
8 1,1-Dichloroethene	61	5.124	5.140 (0.615)	313354	2.23202	2.2
9 Methylene Chloride	84	5.711	5.712 (0.685)	136202	2.19464	2.2
110 MTBE	73	6.034	6.035 (0.724)	201287	1.99866	2.0
10 trans-1,2-Dichloroethene	96	6.049	6.050 (0.725)	200078	2.09392	2.1
11 1,1-Dichloroethane	63	6.518	6.519 (0.782)	375799	2.12873	2.1
12 cis-1,2-Dichloroethene	96	7.134	7.136 (0.856)	180824	1.98786	2.0
13 2,2-Dichloropropane	77	7.149	7.151 (0.857)	243391	1.65083	1.6
14 Bromochloromethane	128	7.399	7.386 (0.887)	<u>-</u> 74744	2.11230	2.1
15 Chloroform	83	7.443	7.444 (0.893)	337737	2.08023	2.1
16 1,1,1-Trichloroethane	97	7.677	7.680 (0.921)	329237	2.08325	2.1

Data File: /chem/VOAMS5.i/524/04-13-06/13apr06.b/e41286.d Report Date: 19-Apr-2006 10:20

					.	CONCENTRA	ATIONS
		QUANT SIG				ON-COLUMN	FINAL
Co	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
==		====	===	x = = = = = = = = = = = = = = = = = = =			
	17 1,1-Dichloropropene .	75	7.839	7.841 (0.940)	264634	1.86003	1.9
	18 Carbon Tetrachloride	117	7.868	7.870 (0.944)	288885	1.94998	1.9
	19 Benzene	78	8.074	8.062 (0.968)	544113	2.11445	2.1
	20 1,2-Dichloroethane	62	8.059	8.062 (0.967)	131124	2.17013	2.2 -
*	2 Fluorobenzene	96	8.338	8.343 (1.000)	1362832	5.00000	
	21 Trichloroethene	95	8.763	8.757 (1.051)	233837	1.99506	2.0
	22 1,2-Dichloropropane	63	9.012	9.008 (1.081)	199085	2.17866	2.2
	23 Dibromomethane	93	9.159	9.156 (1.099)	84978	2.09281	2.1
	24 Bromodichloromethane	83	9.306	9.318 (1.116)	224322	1.93909	1.9
	25 cis-1,3-Dichloropropene	75	9.863	9.865 (1.183)	186053	1.88838	1.9
	26 Toluene	92	10.361	10.366 (1.243)	397753	2.08926	2.1
	27 trans-1,3-Dichloropropene	75	10.611	10.618 (1.273)	112785	1.73535	1.7
	28 1,1,2 Trichloroethane	83	10.918	10.913 (1.310)	80827	2.12774	2.1
	29 Tetrachloroethene	166	11.241	11.238 (1.348)	271249	1.88948	1.9
	30 1,3-Dichloropropane	76	11.212	11.208 (1.345)	157039	2.04389	2 - 0
	31 Dibromochloromethane	129	11.623	11.622 (1.394)	108066	1.71478	1.7
	32 1,2-Dibromoethane	107	11.872	11.889 (1.424)	115674	1.95292	2.0
	33 Chlorobenzene	112	12.854	12.850 (1.542)	466238	2.03581	2.0
	34 1,1,1,2-Tetrachloroethane	131	12.986	12.983 (1.557)	189246	1.97610	2.0
	35 Ethylbenzene	91	13.045	13.042 (1.565)	853171	2.03320	2.0
М	38 Xylene (Total)	100			909054	5.94895	5.9
	36 m+p-Xylene	1.06	13.309	13.310 (1.596)	630428	4.00189	4.0
	37 o-Xylene	106	14.217	14.210 (1.705)	278626	1.94351	1.9
	39 Styrene	104	14.232	14.239 (1.707)	365013	1.74865	1.7
	40 Bromoform	173	14.613	14.625 (1.753)	34231	1.46561	1.5
	41 Isopropylbenzene	105	14.921	14.921 (1.790)	854993	1.91042	1.9
\$	42 4 Bromofluorobenzene (SUR)	95	15.215	15.215 (1.825)	767510	4.92755	4.9
	43 1,1,2,2-Tetrachloroethane	83	15.406	15.423 (1.848)	102506	2.00033	2.0
	45 1,2,3 Trichloropropane	110	15.523	15.526 (1.862)	26452	2.03144	2.0
	44 Bromobenzene	156	15.523	15.526 (1.862)	175546	1.92050	1.9
	46 n-Propylbenzene	91	15.655	15.660 (1.878)	1008898	1.91465	1.9
	47 2-Chlorotoluene	91	15.832	15.837 (1.899)	624864	2.05178	2.0
	48 1,3,5-Trimethylbenzene	105	15.949	15.956 (1.913)	654216	1.95398	2.0
	49 4-Chlorotoluene	91	16.008	16.016 (1.920)	657523	1.93984	1.9
	50 tert-Butylbenzene	119	16.537	16.535 (1.983)	720435	1.91716	1.9
	51 1,2,4 Trimethylbenzene	105	16.625		606979	1.89754	1.9
	52 sec-Butylbenzene	105	16.933	16.935 (2.031)	870721	1.80745	1.8
	54 4-Isopropyltoluene	119		17.202 (2.063)	800695	1.88047	1.9
	53 m-Dichlorobenzene	146		17.172 (2.059)	342659	1.93261	1.9
	55 p-Dichlorobenzene	146	17.330		332901	1.93637	1.9
	56 n-Butylbenzene	91	18.006	18.000 (2.160)	720604	1.82860	1.8
\$	57 1,2-Dichlorobenzene-d4 (SUR)	152	18.036		437551	4.86514	4.9
7	58 o-Dichlorobenzene	146	18.080		267031	1.97145	2.0
	59 1,2-Dibromo-3-Chloropropane	75	19.622		13932	2.38927	2.4
	60 1,2,4-Trichlorobenzene	180	21.357		169265	1.78466	1.8
	61 Hexachlorobutadiene	225	21.725	21.717 (2.606)	157217	1.78434	1.8
	62 Naphthalene	128		21.925 (2.630)	170116	1.93515	1.9
	oz wapitenarciw	120	21.771	-2.5-0 (0.000)	_,0110		

Data File: /chem/VOAMS5.i/524/04-13-06/13apr06.b/e41286.d Report Date: 19-Apr-2006 10:20

					CONCENTRA	ATIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
		==				=======
63 1,2,3-Trichlorobenzene	180	22.490	22.489 (2.697)	118126	1.82897	1.8

Data File: /chem/VOAMS5.i/524/04-13-06/13apr06.b/e41286.d

VOLATILE BLANK SPIKE/BLANK SPIKE DUPLICATE RECOVERY SUMMARY METHOD 524.2

Matrix: WATER QA Batch: 1743

Level: DW

	SPIKE ADDED	BS %	BSD %	
Compound	(ug/L)	REC.	REC.	RPD
		========		=======
Acetone	20	100	125	22.2
2-Butanone	20	95	110	14.6
4-Methyl-2-pentanone	20	105	110	4.7
2-Hexanone	20	100	120	18.2
Carbon Disulfide	20	85	90	5.7
Diethyl Ether	20	100	110	9.5
Iodomethane	20	100	110	9.5
Allyl Chloride	20	95	115	19.0
Acrylonitrile	200	110	125	12.8
Propionitrile	200	110	110	0.0
Methyl Acrylate	20	100	110	9.5
Methacrylonitrile	20	100	110	9.5
Tetrahydrofuran	20	85	80	6.1
1-Chlorobutane	20	100	115	14.0
Methyl Methacrylate	20	105	120	13.3
2-Nitropropane	200	105	1.10	4.7
Chloroacetonitrile	200	95	100	5.1
1,1-Dichloropropanone	20	100	120	18.2
Ethyl Methacrylate	20	110	120	8.7
trans-1,4-Dichloro-2-but	20	95	120	23.3
Pentachloroethane	20	100	105	4.9
Hexachloroethane	20	100	105	4.9
Nitrobenzene	200	80	85	6.1

^{*} Values outside of QC limits

Data File: /chem/VOAMS5.i/524-R4/04-13-06/13apr06.b/e41275.d Report Date: 19-Apr-2006 10:22

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file: /chem/VOAMS5.i/524-R4/04-13-06/13apr06.b/e41275.d Lab Smp Id: 1743BS-R4 Inj Date: 13-APR-2006 13:38

Operator : VOAMS 5 Smp Info : 1743BS-R4 Inst ID: VOAMS5.i

Misc Info : Comment

Method : /chem/VOAMS5.i/524-R4/04-13-06/13apr06.b/524R4 04.m

Meth Date : 19-Apr-2006 10:22 lily Quant Type: ISTD Cal Date : 13-APR-2006 12:25 Cal File: e41273.d

QC Sample: BS Als bottle: 3

Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value	Description
DF Vo	1.00000 25.00000	Dilution Factor Sample Volume

Cpnd Variable Local Compound Variable

						CONCENTRA	ATIONS
		QUANT SIG				ON-COLUMN	FINAL
Compo	unds	MASS	RT	EXP RT REL R	RESPONSE	(ug/L)	(ug/L)
=====		====	==	=======================================		=======	
125	Diethyl Ether	59	4.797	4.801 (0.575	646754	20.1532	20
113	Acetone ·	43	5.179	5.197 (0.621	.) 51724	19.5699	20
126	Iodomethane	142	5.326	5.329 (0.639	3372381	20.4845	20
120	Carbon Disulfide	76	5.414	5-432 (0-649	3336657	17.2158	17
127	Allyl Chloride	76	5.561	5.564 (0.667	731466	19.0821	19
128	Acrylonitrile	52	5.974	5.990 (0.716	744542	218.745	220
1,14	2-Butanone	43	7.120	7.135 (0.854	163029	19.0761	19
129	Propionitrile	54	7.179	7.194 (0.863	.) 280288	219.718	220
1.30	Methyl Acrylate	55	7.208	7.208 (0.864	462565	20.4464	20
131	Methacrylonitrile	67	7.340	7.355 (0.880	118729	19.9821	20
132	Tetrahydrofuran	71	7.458	7.458 (0.894	.) 29227	17.1356	17
133	1-Chlorobutane	56	7.752	7.751 (0.929	3940034	20.1026	20
* 2	Fluorobenzene	96	8.341	8.338 (1.000) 1358466	5.00000	
134	Methyl Methacrylate	69	9.046	9.057 (1.085	420379	21.2050	21
136	Chloroacetonitrile	48	9.531	9.556 (1.143) 41463	187.051	190
135	2-Nitropropane	43	9.546	9.556 (1.145	1255267	206.655	210

Data File: /chem/VOAMS5.i/524-R4/04~13-06/13apr06.b/e41275.d Report Date: 19-Apr-2006 10:22

						CONCENTRA	ATIONS
		QUANT SIG				ON COLUMN	FINAL
Comp	ounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
====	**************************************	===	==	=======================================	========	======	======
1.1	5 4-Methyl-2-pentanone	43	10.015	10.025 (1.201)	474907	20.9765	21
13	7 1,1-Dichloropropanone	43	10.103	10.113 (1.211)	346114	20.1257	20
13	8 Ethyl Methacrylate	69	10.661	10.670 (1.278)	869407	21.5227	22
11	9 2-Hexanone	43	11.262	11.257 (1.350)	278210	20.1302	20
\$ 4	2 4-Bromofluorobenzene (SUR)	95	15.220	15.215 (1.825)	774412	4.91216	4.9
13	9 trans-1,4-Dichloro-2-butene	53	1,5.513	15.524 (1.860)	30828	19.3355	19
14	0 Pentachloroethane	167	16.585	16.581 (1.988)	1091731	20.1394	20
\$ 5	7 1,2-Dichlorobenzene-d4 (SUR)	152	18.043	18.037 (2.163)	432710	4.80283	4.8
14	1 Hexachloroethane	117	18.631	18.625 (2.234)	1949413	19.7857	20
14	2 Nitrobenzene	51	20.057	20.038 (2.405)	36709	165.379	160

Data File: /chem/VOAMS5.i/524-R4/04-13-06/13apr06.b/e41287.d Report Date: 19-Apr-2006 10:23

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file : /chem/VOAMS5.i/524-R4/04-13-06/13apr06.b/e41287.d

Lab Smp Id: 1743BSD-R4

Inj Date : 13-APR-2006 19:36 Operator : VOAMS 5 Smp Info : 1743BSD-R4 Inst ID: VOAMS5.i

Misc Info : Comment

Method : /chem/VOAMS5.i/524-R4/04-13-06/13apr06.b/524R4_04.m

Quant Type: ISTD Meth Date: 19-Apr-2006 10:22 lily Cal File: e41273.d Cal Date : 13-APR-2006 12:25 _ QC Sample: BSD Als bottle: 23

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value	Description
DF Vo	1.00000	Dilution Factor Sample Volume

Local Compound Variable Cpnd Variable

					CONCENTRA	RIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	_ RESPONSE	(ug/L)	(ug/L)
	# <u>*</u> .*	==		=======	=======	======
125 Diethyl Ether	59	4.802	4.801 (0.576)	706002	21.8668	22
113 Acetone	43	5.183	5.197 (0.622)	65948	24.8012	25
126 Iodomethane	142	5.329	5.329 (0.639)	3583956	21.6385	22
120 Carbon Disulfide	76	5.432	5.432 (0.652)	3527740	18.0920	18
127 Allyl Chloride	76	5.564	5.564 (0.667)	872332	22.6197	23
128 Acrylonitrile	52	5.990	5.990 (0.718)	851458	248.649	250
114 2-Butanone	43	7.134	7.135 (0.856)	186429	21.6826	22 "
129 Propionitrile	54	7.193	7.194 (0.863)	285794	222.684	220
130 Methyl Acrylate	55	7.207	7.208 (0.865)	500775	22.0020	22
131 Methacrylonitrile	67	7.339	7.355 (0.880)	133814	22.3851	22
132 Tetrahydrofuran	71	7.442	7.458 (0.893)	27339	15.9321	16
133 1-Chlorobutane	56	7.750	7.751 (0.930)	4516406	22.9044	23
* 2 Fluorobenzene	96	8.337	8.338 (1.000)	1366703	5.00000	
134 Methyl Methacrylate	69	9.055	9.057 (1.086)	480091	24.0711	24
136 Chloroacetonitrile	48	9.554	9.556 (1.146)	44581	199.905	200
135 2-Nitropropane	43	9.554	9.556 (1.146)	1374415	224.906	220

Data File: /chem/VOAMS5.i/524-R4/04-13-06/13apr06.b/e41287.d Report Date: 19-Apr-2006 10:23

					CONCENTRA	TITONS
	QUANT SIG				ON-COLUMN	FINAL.
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	====	==	==========	**======	======	
115 4-Methyl-2-pentanone	43	10.023	10.025 (1.202)	499095	21.9120	22
137 1,1-Dichloropropanone	43	10.111	10.113 (1.213)	411567	23.7874	24
138 Ethyl Methacrylate	69	10.668	10.670 (1.280)	970715	23.8858	24
119 2 Hexanone	43	11.255	11.257 (1.350)	337769	24.2923	24
\$ 42 4-Bromofluorobenzene (SUR)	95	15.211	15.215 (1.825)	769622	4.85236	4.8
139 trans-1,4-Dichloro-2 butene	53	15.520	15.524 (1.862)	38548	24.0318	24
140 Pentachloroethane	167	16.576	16.581 (1.988)	1172462	21.4983	21.
\$ 57 1,2-Dichlorobenzene-d4 (SUR)	152	18.031	18.037 (2.163)	430346	4.74781	4.7
141 Hexachloroethane	117	18.619	18.625 (2.233)	2095193	21.1372	21
142 Nitrobenzene	51	20.030	20.038 (2.403)	38594	172.823	170

Internal Standard Area and RT Summary

Lab File ID (Standard): E41266

Date Analyzed: 04/13/06

Instrument ID: VOAMS5

Time Analyzed: 0855

	1	7.0.1		r			
		IS1				"	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	=======================================	========	======		======	========	======
	12 HOUR STD	1406081	8.34		·		
	UPPER LIMIT	2812162	8.84				
	LOWER LIMIT	984257	7.84				
	========	========		========			======
	LABORATORY						
	SAMPLE NO.						
		=======					
01	1741B\$	1377579	8.34				
02	EV103	1383070	8.35				
03	1741BSD	1362832	8.34				
04	TITLO	1302032	0.54				
05							
06							
07							
					İ		
80							
09							
10							
11				·			
12			,				
13							
14							
15							
16							
17							
18					-		
19							
20						l	
21							
22							
22				l	l		l

IS1

= Fluorobenzene

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 30% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

Lab File ID (Standard): E41266 Date Analyzed: 04/13/06

Instrument ID: VOAMS5 Time Analyzed: 0855

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	IS1					
	AREA #	RT #	AREA #	RT #	AREA #	RT #
=========		======	========	======		======
12 HOUR ST		8.34				
UPPER LIMI		8.84				
LOWER LIMI	T 984257	7.84				
LABORATORY SAMPLE NO.		======		======	=======================================	=====
			 =========		 	
01 EV103	1383070	8.35				
02 725183	1354566	8.36				
03	1331300	0.50	. —————	l		-
04		<u> </u>				
05						
56						
07	_					
08						
09				i ———		
LO						
L1						
2						
L3						
L5						
L6			****			
L7						
L8						
L9						
20						
21		. ——				-
22						-
1						

IS1 = Fluorobenzene

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -30% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

Lab File ID (Standard): E41270 Date Analyzed: 04/13/06

Instrument ID: VOAMS5 Time Analyzed: 1055

	,					·	·····
		IS1					·
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	========	========	======	========	======		======
	12 HOUR STD	1332934	8.34				
	UPPER LIMIT	2665868	8.84	· · · · · · · · · · · · · · · · · · ·			
	LOWER LIMIT	933054	7.84		· · · · · · · · · · · · · · · · · · ·		
		========			======		======
	LABORATORY			-			
	SAMPLE NO.						
	=========		l				
01	1743BS-R4	1358466	======	======		=======	=====
			8.34				
02	EV103A	1401898	8.35				
03	1743BSD-R4	1366703	8.34				
04							
05							
06							
07							
08							
09							
10							
11							
12							
13							
14	YHRONE -						
15							
16							
17							
18							
19							***************************************
20							
21							
22							
				-		·	

IS1 = Fluorobenzene

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -30% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

Lab File ID (Standard): E41270 Date Analyzed: 04/13/06

Instrument ID: VOAMS5 Time Analyzed: 1055

					,		
		IS1			!		
		AREA #	RT #	AREA #	RT #	AREA #	RT #
		========			l ======		======
	12 HOUR STD	1332934	8.34				
	UPPER LIMIT						
		2665868	8.84				
	LOWER LIMIT	933054	7.84				
	=========	=======	======	=======	======	=======	======
	LABORATORY						
	SAMPLE NO.	•					
	==========						<u></u>
01	EV103A	1401898	0 25				
			8.35				
02	725183	1376599	8.36				
03							
04							
05							
06							. ———
07							
08	. ————						
09							·
10							
11							
12					ļ ———		
13		-	*				
14							
14							
15							
16							
17							
18							
19							
20							
21		*****		-			
22			Ĭ.				
						,	1

IS1 = Fluorobenzene

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -30% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

Injection Log Book

STL EDISON ANALYTICAL INJECTION LOG SUMMARY

Ţ

rument ID: VOAMS5.i ytical Batch: /chem/VOAMS5.i/524/04-13-06/13apr06.b

Generated: 04/15/2006

Date Data	ALS	Sample	_	Client ID	Job	- 40	/AI	FV FV	_	Dil	Sublist	LPB	GTS H4	COMIN	COMMENTS
File		다 			#		WI			Fac			LOT		
13/06 0758 e41264.d	<u> </u>	EBFB103	<u> </u>					0 _	<u> </u>		- all		- 6869	 -	
13/06 0825 e41265.d	<u> </u>	ESTD005				- 2	25	<u> </u>	<u> </u>		- all		GAS 50.		
13/06 0855 e41266.d	27	ESTD002	1				25		<u> </u>		a11		MIX1 50		
13/06 0925 e41267.d	<u> m</u> _	ESTD001					25	0 -	<u> </u> <u>-</u> _		a]]		491 TBA: 1945	1 (1	
13/06 0955 e41268.d	4	ESTD040	<u> </u>				25	0 -	<u> </u>		lia		GAS BS:		
13/06 1025 e41269.d	N _	ESTD020	<u> </u>			- 2	25		<u>-</u>		all		8260BS: (C.)		
13/06 1125 e41271.d	27 _	BS				~ -	25	0 -			524		IS/SS:		
13/06 1303 e41274.d	~ _	1741BS	<u> </u>				25	0 -	<u> </u>		524		BFB SS: 7	<u> </u>	
13/06 1408 e41276.d	112	EV103	<u> </u>	EV103			25				all	EV.03	13 - Carlo		
13/06 1438 e41277.d	133	725159	<u>-</u>	1041106	0262	1741 25	ın	<u> </u>	<u> </u>		524				
13/06 1507 e41278.d	114	725158	1 M	€ 437LOCK	0262	1741 25	ru.	0	<u> </u>		524		- 	<u>ا</u> ا	
13/06 1537 e41279.d	115	725163	<u>"</u> -	C 840SMST	0264	1741 2	25	0	<u> </u>		524			<u> </u>	
13/06 1607 e41280.d	116	725183		C 441LOCK	0266	1741 25	Ly.		<u> </u>		524				
13/06 1637 e41281.d	17	17 725184	<u>⊕</u>	481LOCK	0267	1741 25	rs.	0			524		۲.]	<u></u>	

STL EDISON

ANALYTICAL INJECTION LOG SUMMARY

rument ID: VOAMS5.i
yrical Batch: /chem/VOAMS5.i/524/04-13-06/13apr06.b

Generated: 04/15/2006

Date Data File	ALS	s Sample ID		Client ID	407 H		IV/	FV	Dill Fac	Sublist	LPB	PH STD LOT	COMMENTS
13/06 1706 e41282.d	118	722683	\ \[\subseteq \]	61564	P732	1741 25		٥	1	MECLEA	(3)	1	
13/06 1736 e41283.d 19 722684	119	722684]]	61565	P732	1741 25		0		MECL_EA	··	***	
13/06 1806 e41284.d	l	20 723169	11-	T MW-18-DTR	P836	1703 25		0		BTEX_NAP		- At	
13/06 1836 e41285.d	ì	21 723168	17	MW-18-BRR	P836	1703 25		0	100	BTEX_NAP		7 -	
13/06 1906 e41286.d		22 1741BSD				25		0		524			25
						<u> </u> 	*						<u> </u> - -
. pa	3 -)		Read and Understood by	ndersto	. Aq poc		d	700,400				
:	4/15/10E	اوريا				Date:	3	4-15-06	7				

90-51-6

 \bigcirc

(

1.3

ACE

0

P732 |1743 |25

C |61565

119 (722684

.3/06 1736 e41283a.

|23 |1743BSD-R4

3/06 1936 e41287.d

25

a11

 \bigcirc

4

Read and Understood by:__

COMMENTS \mathcal{C} \bigcirc Ú Ū 524R4: 524R4 BS; 1006-155 15/SS; 18/R1/155 BFB SS; MTBE/TF: MIX1 50: 8260BS: GAS 50: SID LOI MISC 524.2 ~ ЪН 1501.03 A 1.PB Sublist all |a11 all |a11 [a]] a11 |a11 |a11 |a11 |a11 ACE a11 Fac Di l ₫. ⊏ _ _ \mathbb{F} 0 0 0 0 0 IW. 25 25 25 25 25 Q262 |1743|25 |0266 |1743 | 25 Q267 |1743|25 P732 |1743|25 9262 |1743 | 25 |0264 |1743 | 25 ð Job # Client ID T041186 437LOCK |840SMST 481LOCK 441LOCK EV103A 61564 D W Ü ESTD040-R4 Sample ESTD020-R4 ESTD005-R4 1743BS-R4 EBFB103a ΩI |13 |725159 15 | 725163 EV103A 725183 17 |725184 118 | 722683 14 |725158 ALS 16 77 ٣ 7 9 ~ 2 13/06 1055 e41270.d 13/06 1225 e41273.d 13/06 1338|e41275.d 13/06 1155 e41272.d 13/06 0758 e41264a. 13/06 1537|e41279a. 13/06 1408 e41276a. 13/06 1637|e41281a. 13/06 1438 e41277a. 1507 e41278a. .3/06 1607 e41280a. .3/06 1706|e41282a. Data File

ANALYTICAL INJECTION LOG SUMMARY STL EDISON

ytical Batch: /chem/VOAMSS.i/524-R4/04-13-06/13apr06.b

rument ID: VOAMS5.i

Generated: 04/15/2006

Date

Q266

13/06

This is the Last Page of the Document